DOI QR코드

DOI QR Code

Recent Developments in Synthesis of Colloidal Quantum Dots

콜로이드 양자점 합성의 다양한 연구 개발 동향

  • 정재용 (재료연구소 분말/세라믹연구본부) ;
  • 홍종팔 (라미나(주)) ;
  • 김영국 (재료연구소 분말/세라믹연구본부)
  • Received : 2018.07.04
  • Accepted : 2018.07.13
  • Published : 2018.08.28

Abstract

Over the last decade, the study of the synthesis of semiconductor colloidal quantum dots has progressed at a tremendous rate. Colloidal quantum dots, which possess unique spectral-luminescent characteristics, are of great interest in the development of novel materials and devices, which are promising for use in various fields. Several studies have been carried out on hot injection synthesis methods. However, these methods have been found to be unsuitable for large-capacity synthesis. Therefore, this review paper introduces synthesis methods other than the hot injection synthesis method, to synthesize quantum dots with excellent optical properties, through continuous synthesis and large capacity synthesis. In addition, examples of the application of synthesized colloid quantum dots in displays, solar cells, and bio industries are provided.

Acknowledgement

Supported by : 재료연구소, 중소벤처기업부

References

  1. B. Kwon, K. G. Lee, T. J. Park, H. Kim, T. J. Lee, S. J. Lee and D. Y. Jeon: Small, 8 (2012) 3257. https://doi.org/10.1002/smll.201200773
  2. A. Günther and K. F. Jensen: Lab on a Chip, 6 (2006) 1487. https://doi.org/10.1039/B609851G
  3. S. Gomez-de Pedro, C. S. Martínez-Cisneros, M. Puyol and J. Alonso-Chamarro: Lab on a Chip, 12 (2012) 1979. https://doi.org/10.1039/c2lc00011c
  4. K. Kim, S. Jeong, J. Y. Woo and C. Han: Nanotechnology, 23 (2012) 065602. https://doi.org/10.1088/0957-4484/23/6/065602
  5. O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik: J. Phys. Chem., 98 (1994) 4966. https://doi.org/10.1021/j100070a004
  6. R. G. Larson, E. S. Shaqfeh and S. J. Muller: J. Fluid Mech., 218 (1990) 573. https://doi.org/10.1017/S0022112090001124
  7. S. J. Muller, R. G. Larson and E. S. Shaqfeh: Rheol. Acta, 28 (1989) 499. https://doi.org/10.1007/BF01332920
  8. R. D. Moser, P. Moin and A. Leonard: J. of Computational Physics, 52 (1983) 524. https://doi.org/10.1016/0021-9991(83)90006-2
  9. P. S. Marcus: J. Fluid Mech., 146 (1984) 45. https://doi.org/10.1017/S0022112084001762
  10. B. Eckhardt, S. Grossmann and D. Lohse: J. Fluid Mech., 581 (2007) 221. https://doi.org/10.1017/S0022112007005629
  11. T. S. Tran, S. J. Park, S. S. Yoo, T. Lee and T. Kim: RSC Adv., 6 (2016) 12003. https://doi.org/10.1039/C5RA22273G
  12. Y. H. Song, S. H. Choi, W. K. Park, J. S. Yoo, S. B. Kwon, B. K. Kang, S. R. Park, Y. S. Seo, W. S. Yang and D. H. Yoon: Sci. Rep., 8 (2018) 2009. https://doi.org/10.1038/s41598-018-20376-3
  13. http://www.kims.re.kr/v17/bbx/content.php?co_id=02_02 _02
  14. T. Xuan, J. Liu, H. Li, H. Sun, L. Pan, X. Chen and Z. Sun: RSC Adv., 5 (2015) 7673. https://doi.org/10.1039/C4RA14982C
  15. S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. Kwok, C. Wang and W. Y. Teoh: J. Phys. Chem. C, 118 (2014) 16393. https://doi.org/10.1021/jp410279z
  16. Y. Huang, Y. Lan, Q. Yi, H. Huang, Y. Wang and J. Lu: Chem. Res. Chin. Univ., 32 (2016) 16. https://doi.org/10.1007/s40242-015-5279-8
  17. M. R. Hodlur and K. M. Rabinal: Chem. Eng. J., 244 (2014) 82. https://doi.org/10.1016/j.cej.2014.01.064
  18. Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulovic: Nat. Photonics, 7 (2013) 13. https://doi.org/10.1038/nphoton.2012.328
  19. J. Lim, B. G. Jeong, M. Park, J. K. Kim, J. M. Pietryga, Y. Park, V. I. Klimov, C. Lee, D. C. Lee and W. K. Bae: Adv. Mater., 26 (2014) 8034. https://doi.org/10.1002/adma.201403620
  20. V. K. LaMer and R. H. Dinegar: J. Am. Chem. Soc., 72 (1950) 4847. https://doi.org/10.1021/ja01167a001
  21. I. M. Lifshitz and V. V. Slyozov: J.Phys. Chem. Solids, 19 (1961) 35. https://doi.org/10.1016/0022-3697(61)90054-3
  22. V. K. L. Mer: Ind. Eng. Chem., 44 (1952) 1270. https://doi.org/10.1021/ie50510a027
  23. J. W. Mullin: Crystallization(Ed.), Butterworth-Heinemann (2001) 1.
  24. M. Niederberger and H. Colfen: Phys. Chem. Chem. Phys., 8 (2006) 3271. https://doi.org/10.1039/B604589H
  25. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos: Nature, 404 (2000) 59. https://doi.org/10.1038/35003535
  26. V. F. Puntes, D. Zanchet, C. K. Erdonmez, and A. P. Alivisatos: J. Am. Chem. Soc., 124 (2002) 12874. https://doi.org/10.1021/ja027262g
  27. I. Robinson, S. Zacchini, L. D. Tung, S. Maenosono and N. T. Thanh: Chem. Mater., 21 (2009) 3021. https://doi.org/10.1021/cm9008442
  28. Z. Tang and N. A. Kotov: Adv Mater., 17 (2005) 951. https://doi.org/10.1002/adma.200401593
  29. C. Wagner: Zeitschrift Fur Elektrochemie, Berichte Der Bunsengesellschaft Fur Physikalische Chemie, 65 (1961) 581.
  30. H. Zheng, R. K. Smith, Y. Jun, C. Kisielowski, U. Dahmen and A. P. Alivisatos: Science, 324 (2009) 1309. https://doi.org/10.1126/science.1172104
  31. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 128 (2006) 2385. https://doi.org/10.1021/ja056494n
  32. A. Saha, K. V. Chellappan, K. S. Narayan, J. Ghatak, R. Datta and R. Viswanatha: J. Phys. Chem. Lett., 4 (2013) 3544. https://doi.org/10.1021/jz401958u
  33. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang and X. Peng: Nature, 515 (2014) 96. https://doi.org/10.1038/nature13829
  34. C. B. Murray, C. R. Kagan and M. G. Bawendi: Annu. Rev. Mater. Sci., 30 (2000) 545. https://doi.org/10.1146/annurev.matsci.30.1.545
  35. C. de Mello Donega, P. Liljeroth and D. Vanmaekelbergh: Small, 1 (2005) 1152. https://doi.org/10.1002/smll.200500239
  36. S. G. Kwon and T. Hyeon: Small, 7 (2011) 2685. https://doi.org/10.1002/smll.201002022
  37. S. Asokan, K. M. Krueger, V. L. Colvin and M. S. Wong: Small, 3 (2007) 1164. https://doi.org/10.1002/smll.200700120
  38. Z. A. Peng and X. Peng: J. Am. Chem. Soc., 123 (2001) 1389. https://doi.org/10.1021/ja0027766
  39. L. Li and P. Reiss: J. Am. Chem. Soc., 130, (2008) 11588. https://doi.org/10.1021/ja803687e
  40. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise and W. W. Webb: Science, 300 (2003) 1434. https://doi.org/10.1126/science.1083780
  41. D. Loss and D. P. DiVincenzo: Phys. Rev. A, 57 (1998) 120. https://doi.org/10.1103/PhysRevA.57.120
  42. D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen and P. H. Seeberger: Chem. Commun., (2005) 578.
  43. W. Lin, Y. Wang, S. Wang and H. Tseng: Nano Today, 4 (2009) 470. https://doi.org/10.1016/j.nantod.2009.10.007
  44. K. W. Wang, K. G. Lee, T. J. Park, Y. Lee, J. Yang, D. H. Kim, S. J. Lee and J. Y. Park: Biotechnol. Bioeng., 109 (2012) 289. https://doi.org/10.1002/bit.23286
  45. R. Kikkeri, P. Laurino, A. Odedra and P. H. Seeberger: Angew. Chem. Int. Ed., 49 (2010) 2054. https://doi.org/10.1002/anie.200905053
  46. A. M. Smith and S. Nie: Acc. Chem. Res., 43 (2009) 190.
  47. H. Goesmann and C. Feldmann: Angewandte Chemie International Edition, 49 (2010) 1362. https://doi.org/10.1002/anie.200903053
  48. P. Reiss, M. Protiere and L. Li: Small 5 (2009) 154. https://doi.org/10.1002/smll.200800841
  49. V. I. Klimov: Nanocrystal Quantum Dots, CRC Press (2010) 1.
  50. J. Y. Kim, O. Voznyy, D. Zhitomirsky and E. H. Sargent: Adv Mater., 25 (2013) 4986. https://doi.org/10.1002/adma.201301947
  51. D. V. Talapin, J. Lee, M. V. Kovalenko and E. V. Shevchenko: Chem. Rev., 110 (2009) 389.
  52. S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder and V. I. Klimov: J. Am. Chem. Soc., 129 (2007) 11708. https://doi.org/10.1021/ja068351m
  53. S. K. Panda, S. G. Hickey, H. V. Demir and A. Eychmuller: Angewandte Chemie, 123 (2011) 4524. https://doi.org/10.1002/ange.201100464
  54. N. Pradhan and X. Peng: J. Am. Chem. Soc., 129 (2007) 3339. https://doi.org/10.1021/ja068360v
  55. S. M. Hwang, J. B. Lee, S. H. Kim and J. H. Ryu: J. of the Korean Crystal Growth and Crystal Technology, 22 (2012) 233. https://doi.org/10.6111/JKCGCT.2012.22.5.233
  56. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat: J. Am. Chem. Soc., 128 (2006) 2385. https://doi.org/10.1021/ja056494n
  57. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath: Science, 277 (1997) 1978. https://doi.org/10.1126/science.277.5334.1978
  58. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez: Nat. Biotechnol. 21 (2003) 41. https://doi.org/10.1038/nbt764
  59. W. Liu, M. Howarth, A. B. Greytak, Y. Zheng, D. G. Nocera, A. Y. Ting and M. G. Bawendi, J. Am. Chem. Soc., 130 (2008) 1274. https://doi.org/10.1021/ja076069p
  60. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel and M. K. Nazeeruddin: Nano Letters, 9 (2009) 4221. https://doi.org/10.1021/nl902438d