DOI QR코드

DOI QR Code

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu (Dept. of Electrical and Information Engineering, Seoul Nat'l Univ. of Science and Technology) ;
  • Chung, Jae-Young (Dept. of Electrical and Information Engineering, Seoul Nat'l Univ. of Science and Technology)
  • Received : 2018.01.16
  • Accepted : 2018.02.06
  • Published : 2018.09.01

Abstract

We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.

Keywords

Active antenna;Axial ratio;Circularly polarization;Global navigation satellite system;Patch antenna

Acknowledgement

Supported by : Agency for Defense Development

References

  1. K. Y. Kim, "Analysis of anti-jamming techniques for satellite navigation systems," J. Korean Inst. Commun. Inf. Sci., vol. 38, pp. 1216-1227, 2013.
  2. G. Byun, J. C. Hyun, S. M. Seo, H. Choo, "Optimum Array Configuration to Improve Null Steering Time for Mobile CRPA Systems," J. Electromagn. Eng. Sci., vol. 16, pp. 74-79, 2016. https://doi.org/10.5515/JKIEES.2016.16.2.74
  3. A. Friedrich, L. Berkelmann, T. Martinelli, B. Geck, O. Klemp, I. Kriebitzsch, "An active three-dimensional GPS patch antenna using MID-technology," In proc. 2015 EuRAD, 2015, pp. 373-376.
  4. Z. Wang, H. Liu, S. J. Fang, Y. Cao, "A low-cost dual-wideband active GNSS antenna with low-angle multipath mitigation for vehicle applications," Prog. Electromagn. Res., vol. 144, pp. 281-289, 2014. https://doi.org/10.2528/PIER13121205
  5. L. R. Kuo, W. J. Liao, H. T. Chou, "An Active Patch Antenna with Embedded LNA Module," In Proc. IEEE-ISAP, 2006, pp. 3639-3642.
  6. T. Fukusako, "Broadband Characterization of Circularly Polarized Waveguide Antennas Using L-Shaped Probe," J. Electromagn. Eng. Sci., vol. 17, pp. 1-8, 2017. https://doi.org/10.5515/JKIEES.2017.17.1.1
  7. J. H. Kim, M. S. Kim, J. S. Kim, S. B. Son, Y. B. Kim, "A Single Layer Multi Band Microstrip Patch Antenna for GPS L1/L2, GLONASS Receiver Applications," J. Korea Inst. Electromagnet. Eng. Sci., vol. 22, no. 10, pp. 990-998, 2011. https://doi.org/10.5515/KJKIEES.2011.22.10.990
  8. Y. Q. Zhang, X. Li, L. Yang, S. X. Gong "Dual-band circularly polarized antenna with low wide-angle axial-ratio for tri-band GPS applications," Prog. Electromagn. Res. C, vol. 32, pp. 167-179, 2012. https://doi.org/10.2528/PIERC12071704
  9. K. Y. Lam, K. M. Luk, K. F. Lee, H. Wong, K. B. Ng, "Small circularly polarized U-slot wideband patch antenna," IEEE Antennas and Wireless Propagat., Lett., vol. 10, pp. 87-90, 2011. https://doi.org/10.1109/LAWP.2011.2110631
  10. K. B. Ng, C. H. Chan, K. M. Luk, "Low-cost vertical patch antenna with wide axial-ratio beam-width for handheld satellite communications terminals," IEEE Trans. Antennas Propagat., vol. 63, no. 4, pp. 1417-1424, 2015. https://doi.org/10.1109/TAP.2015.2403314
  11. A. Dierck, H. Rogier, F. Declercq, "A wearable active antenna for global positioning system and satellite phone," IEEE Trans. Antennas Propagat., vol. 61, no. 2, pp. 532-538, 2013. https://doi.org/10.1109/TAP.2012.2223441
  12. N. Pham, J. Y. Chung, B. Lee, "A proximity-fed antenna for dual-band GPS receiver," Prog. Electromagn. Res. C, vol. 61, pp. 1-8, 2016.
  13. J. G. Go, J. Y. Chung, "A compact LNA integrated antenna for global navigation satellite systems," In proc. IEEE-RFIT, 2017, pp. 229-231.
  14. C. A. Balanis, "Antenna theory: analysis and design. New York," New Yokr: Wiley, 2005.
  15. RN2 Technologies, "LTCC 3dB Hybrid Coupler," RCP1500Q03 datasheet, Dec. 2012.
  16. H. Iwasaki, "A circularly polarized small-size microstrip antenna with a cross slot," IEEE Trans. on Antennas Propagat., vol. 44, no. 10, pp. 1399-1401, 1996. https://doi.org/10.1109/8.537335
  17. S. J. Jeong, K. C. Hwang, D. I. Hwang, "Compact circularly polarized antenna with a capacitive feed for GPS/GLONASS applications," ETRI J., vol. 34, no. 5, pp. 767-770, 2012. https://doi.org/10.4218/etrij.12.0212.0058
  18. K. W. Khoo, Y. X. Guo, L. C. Ong "Wideband circularly polarized dielectric resonator antenna, IEEE Trans. Antennas and Propagat., vol. 55, no. 7, pp. 1929-1932, 2007. https://doi.org/10.1109/TAP.2007.900241
  19. M. Chen, C. C. Chen, "A compact dual-band GPS antenna design," IEEE Antennas and Wireless Propagat., Lett., vol. 12, pp. 245-248, 2013. https://doi.org/10.1109/LAWP.2013.2247972
  20. L. S. Pereira, R. L. Farias, C. Lucatel, M. V. Heckler, A. F. T. Salazar, "Annular slot antenna for high-precision GPS applications," In proc. IEEE-IMOC, 2013, pp. 1-5.