DOI QR코드

DOI QR Code

바인더 함량에 따른 Li(Ni0.5Co0.2Mn0.3)O2 전극의 접착력 및 전기화학 성능에 관한 연구

Adhesive Strength and Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2Electrodes with Lean Binder Composition

  • 노영준 (대구경북과학기술원 에너지공학전공) ;
  • 변승우 (대구경북과학기술원 에너지공학전공) ;
  • 유명현 (한밭대학교 화학생명공학과) ;
  • 이용민 (대구경북과학기술원 에너지공학전공)
  • Roh, Youngjoon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Byun, Seoungwoo (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Ryou, Myung-Hyun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 투고 : 2018.07.24
  • 심사 : 2018.08.13
  • 발행 : 2018.08.31

초록

동일 전극 로딩 조건(${\sim}15mg\;cm^{-2}$)에서 면적당 용량($mAh\;cm^{-2}$)을 극대화하기 위해, 고분자 바인더의 함량을 4, 2, 1 wt%로 줄인 $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ 전극을 제조하였다. 바인더 함량이 1 wt%로 낮춘 경우, 압연 후 펀칭 과정에서 전극 코팅층이 부분적으로 박리되는 문제가 발생하여 추가 분석은 진행되지 않았다. 전극 내 바인더 함량을 4 wt%에서 2 wt%로 줄이면, 계면 접착력은 0.4846에서 $0.2627kN\;m^{-1}$로 약 46% 감소하고, 전극 코팅층의 강도도 3.847에서 2.013 MPa로 약 48%가 떨어졌다. 그러나, 두 전극을 리튬 전극과 반쪽 전지로 구성하여 전기화학적 특성을 살펴보면, 초기 방전 용량과 충방전 효율은 유사하였다. 하지만, 단기 수명 평가에서 2 wt% 바인더 전극은 수명 특성이 떨어질 뿐만 아니라, 전지를 분해하는 과정에서 전극 코팅층이 집전체에서 박리되는 현상이 관찰되었다. 반면, 4 wt% 바인더 전극은 높은 전극 로딩조건에서도 전극 코팅층과 집전체 계면이 잘 유지되고 있음이 확인되었다.

Acknowledgement

Supported by : Ministry of SMEs and Startups(MSS), Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. B. Scrosati, J. Hassoun, and Y.-K. Sun 'Lithium-ion batteries. A look into the future', Energy Environ. Sci., 4, 3287 (2011). https://doi.org/10.1039/c1ee01388b
  2. M. Armand, and J.-M. Tarascon 'Building better batteries', Nature, 451, 652 (2008). https://doi.org/10.1038/451652a
  3. B. Dunn, H. Kamath, and J.-M. Tarascon, 'Electrical Energy Storage for the Grid: A Battery of Choices', SCIENCE, 334, 928 (2011). https://doi.org/10.1126/science.1212741
  4. T. H. Kim, J. S. Park, S. K. Chang, S. Choi, J. H. Ryu, and H. K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase', Adv. Energy Mater., 2, 860 (2012). https://doi.org/10.1002/aenm.201200028
  5. J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, and J.-G. Zhang, 'High Rate and Stable Cycling of Lithium Metal Anode', Nat. Commun., 6, 636 (2015).
  6. J. Park, J. Jeong, Y. Lee, M. Oh, M.-H. Ryou, and Y. M. Lee, 'Micro-Patterned Lithium Metal Anodes with Suppressed Dendrite Formation for Post Lithium-Ion Batteries', Adv. Mater. Interfaces, 3, 1600140 (2016). https://doi.org/10.1002/admi.201600140
  7. Y.-H. Chen, C.-W. Wang, X. Zhang, and A. M. Sastry, 'Porous Cathode Optimization for Lithium Cells: Ionic and Electronic Conductivity, Capacity, and Selection of Materials', J. Power Sources, 195, 2851-2862 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.044
  8. M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park, and J. W. Choi, 'Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators', Adv. Energy Mater., 2, 645-650 (2012). https://doi.org/10.1002/aenm.201100687
  9. Y.-K. Sun, D.-H. Kim, C. S. Yoon, S.-T. M, J. Prakash, and K. Amine, 'A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries', Adv. Funct. Mater., 20, 485-491 (2010). https://doi.org/10.1002/adfm.200901730
  10. Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. S. Yoon, S.-T. Myung, and K. Amine, 'Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries', Nat. Mater., 11, 942-947 (2012). https://doi.org/10.1038/nmat3435
  11. S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, and K. Kang, 'Understanding the Degradation Mechanisms of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Material in Lithium Ion Batteries', Adv. Energy. Mater., 4, 1300787 (2014). https://doi.org/10.1002/aenm.201300787
  12. J. H. Lee, C. S. Yoon, J.-Y. Hwang, S.-J. Kim, F. Maglia, P. Lamp, S.-T. Myung, and Y.-K. Sun, 'High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded $Li[Ni_{0.85}Co_{0.05}Mn_{0.10}]O_2$ cathode', Energy Environ. Sci., 9, 2152-2158 (2016). https://doi.org/10.1039/C6EE01134A
  13. J. Choi, B. Son, M.-H. Ryou, S. H. Kim, J. M. Ko, and Y. M. Lee, 'Effect of $LiCoO_2$ Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries', J. Electrochem. Sci. Technol., 4, 27-33 (2013). https://doi.org/10.5229/JECST.2013.4.1.27
  14. M. Singh, J. Kaiser, and H. Hahn, 'Thick Electrodes for High Energy Lithium Ion Batteries', J. Electrochem. Soc., 162, A1196-A1201 (2015). https://doi.org/10.1149/2.0401507jes
  15. T. Yoon, S. Park, J. Mun, J. H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, and S. M. Oh, 'Failure Mechanisms of $LiNi_{0.5}Mn_{1.5}O_4$ Electrode at Elevated Temperature', J. Power Sources, 215, 312-316 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.103
  16. Y. K. Jeong, T.-w. Kwon, I. Lee, T.-S. Kim, A. Coskun, and J. W. Choi, 'Millipede-Inspired Structural Design Principle for High Performance Polysaccharide Binders in Silicon Anodes', Energy Environ. Sci., 8, 1224-1230 (2015). https://doi.org/10.1039/C5EE00239G
  17. M. Baunach, S. Jaiser, S. Schmelzle, H. Nirschl, P. Scharfer, and W. Schabel, 'Delamination Behavior of Lithium-Ion Battery Anodes: Influence of Drying Temperature during Electrode Processing', Drying Technol., 34, 462-473 (2016). https://doi.org/10.1080/07373937.2015.1060497
  18. B. Son, M.-H. Ryou, J. Choi, T. Lee, H. K. Yu, J. H. Yu, and Y. M. Lee, 'Measurement and Analysis of Adhesion Property of Lithium-Ion Battery Electrodes with SAICAS', ACS Appl. Mater. Interfaces, 6, 526-531 (2014). https://doi.org/10.1021/am404580f
  19. W. Haselrieder, B. Westphal, H. Bockholt, A. Diener, S. Hoft, and A. Kwade, 'Measuring the Coating Adhesion Strength of Electrodes for Lithium-Ion Batteries', Int. J. Adhes. Adhes., 60, 1-8 (2015). https://doi.org/10.1016/j.ijadhadh.2015.03.002
  20. J. Choi, K. Kim, J. Jeong, K. Y. Cho, M.-H. Ryou, and Y. M. Lee, 'Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries', ACS Appl. Mater. Interfaces, 7, 14851-14858 (2015). https://doi.org/10.1021/acsami.5b03364
  21. K. Kim, S. Byun, I. Cho, M.-H. Ryou, and Y. M. Lee, 'Three-Dimensional Adhesion Map Based on Surface and Interfacial Cutting Analysis System for Predicting Adhesion Properties of Composite Electrode'. ACS Appl. Mater. Interfaces, 8, 23688-23695 (2016). https://doi.org/10.1021/acsami.6b06344
  22. S. Byun, Y. Roh, D. Jin, M.-H. Ryou, and Y. M. Lee, 'Analysis on Adhesion Properties of Composite Electrodes for Lithium Secondary Batteries using SAICAS', J. Korean Electrochem. Soc., 21, 28-38 (2018).
  23. K. Kim, S. Byun, J. Choi, S. Hong, M.-H. Ryou, and Y. M. Lee, 'Elucidating the Polymeric Binder Distribution within Lithium-Ion Battery Electrodes Using SAICAS', Chem. Phys. Chem., 19, 1627-1634 (2018). https://doi.org/10.1002/cphc.201800072
  24. J. Choi, M.-H. Ryou, B. Son, J. Song, J.-K. Park, K. Y. Cho, and Y. M. Lee, 'Improved high-temperature performance of lithium-ion batteries through use of a thermally stable co-polyimide-based cathode binder', J. Power Sources, 252, 138-143 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.015