Adhesive Strength and Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2Electrodes with Lean Binder Composition

바인더 함량에 따른 Li(Ni0.5Co0.2Mn0.3)O2 전극의 접착력 및 전기화학 성능에 관한 연구

  • Roh, Youngjoon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Byun, Seoungwoo (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Ryou, Myung-Hyun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 노영준 (대구경북과학기술원 에너지공학전공) ;
  • 변승우 (대구경북과학기술원 에너지공학전공) ;
  • 유명현 (한밭대학교 화학생명공학과) ;
  • 이용민 (대구경북과학기술원 에너지공학전공)
  • Received : 2018.07.24
  • Accepted : 2018.08.13
  • Published : 2018.08.31


To maximize the areal capacity($mAh\;cm^{-2}$) of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$(NCM523) electrode with the same loading level of $15mg\;cm^{-2}$, three NCM523 electrodes with 4, 2, and 1 wt% poly(vinylidene fluoride)(PVdF) binder content are fabricated. Due to the delamination issue of electrode composite at the edge during punching process, the 1 wt% electrode is excluded for further evaluation. When the PVdF binder content decreases from 4 to 2 wt%, both adhesion strength and shear stress decrease from 0.4846 to $0.2627kN\;m^{-1}$ by -46% and from 3.847 to 2.013 MPa by -48%, respectively. Regardless of these substantial decline of mechanical properties, their initial electrochemical properties such as initial coulombic efficiency and voltage profile are almost the same. However, owing to high loading level, the 2 wt% electrode not only exhibits worse cycle performance than the 4 wt% electrode, but also cannot maintain its mechanical integrity only after 80 cycles. Therefore, if the binder content is reduced to increase the area capacity, the mechanical properties as well as the cycle performance must be carefully evaluated.


Supported by : Ministry of SMEs and Startups(MSS), Korea Institute of Energy Technology Evaluation and Planning (KETEP)


  1. B. Scrosati, J. Hassoun, and Y.-K. Sun 'Lithium-ion batteries. A look into the future', Energy Environ. Sci., 4, 3287 (2011).
  2. M. Armand, and J.-M. Tarascon 'Building better batteries', Nature, 451, 652 (2008).
  3. B. Dunn, H. Kamath, and J.-M. Tarascon, 'Electrical Energy Storage for the Grid: A Battery of Choices', SCIENCE, 334, 928 (2011).
  4. T. H. Kim, J. S. Park, S. K. Chang, S. Choi, J. H. Ryu, and H. K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase', Adv. Energy Mater., 2, 860 (2012).
  5. J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, and J.-G. Zhang, 'High Rate and Stable Cycling of Lithium Metal Anode', Nat. Commun., 6, 636 (2015).
  6. J. Park, J. Jeong, Y. Lee, M. Oh, M.-H. Ryou, and Y. M. Lee, 'Micro-Patterned Lithium Metal Anodes with Suppressed Dendrite Formation for Post Lithium-Ion Batteries', Adv. Mater. Interfaces, 3, 1600140 (2016).
  7. Y.-H. Chen, C.-W. Wang, X. Zhang, and A. M. Sastry, 'Porous Cathode Optimization for Lithium Cells: Ionic and Electronic Conductivity, Capacity, and Selection of Materials', J. Power Sources, 195, 2851-2862 (2010).
  8. M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park, and J. W. Choi, 'Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators', Adv. Energy Mater., 2, 645-650 (2012).
  9. Y.-K. Sun, D.-H. Kim, C. S. Yoon, S.-T. M, J. Prakash, and K. Amine, 'A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries', Adv. Funct. Mater., 20, 485-491 (2010).
  10. Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. S. Yoon, S.-T. Myung, and K. Amine, 'Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries', Nat. Mater., 11, 942-947 (2012).
  11. S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, and K. Kang, 'Understanding the Degradation Mechanisms of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Material in Lithium Ion Batteries', Adv. Energy. Mater., 4, 1300787 (2014).
  12. J. H. Lee, C. S. Yoon, J.-Y. Hwang, S.-J. Kim, F. Maglia, P. Lamp, S.-T. Myung, and Y.-K. Sun, 'High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded $Li[Ni_{0.85}Co_{0.05}Mn_{0.10}]O_2$ cathode', Energy Environ. Sci., 9, 2152-2158 (2016).
  13. J. Choi, B. Son, M.-H. Ryou, S. H. Kim, J. M. Ko, and Y. M. Lee, 'Effect of $LiCoO_2$ Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries', J. Electrochem. Sci. Technol., 4, 27-33 (2013).
  14. M. Singh, J. Kaiser, and H. Hahn, 'Thick Electrodes for High Energy Lithium Ion Batteries', J. Electrochem. Soc., 162, A1196-A1201 (2015).
  15. T. Yoon, S. Park, J. Mun, J. H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, and S. M. Oh, 'Failure Mechanisms of $LiNi_{0.5}Mn_{1.5}O_4$ Electrode at Elevated Temperature', J. Power Sources, 215, 312-316 (2012).
  16. Y. K. Jeong, T.-w. Kwon, I. Lee, T.-S. Kim, A. Coskun, and J. W. Choi, 'Millipede-Inspired Structural Design Principle for High Performance Polysaccharide Binders in Silicon Anodes', Energy Environ. Sci., 8, 1224-1230 (2015).
  17. M. Baunach, S. Jaiser, S. Schmelzle, H. Nirschl, P. Scharfer, and W. Schabel, 'Delamination Behavior of Lithium-Ion Battery Anodes: Influence of Drying Temperature during Electrode Processing', Drying Technol., 34, 462-473 (2016).
  18. B. Son, M.-H. Ryou, J. Choi, T. Lee, H. K. Yu, J. H. Yu, and Y. M. Lee, 'Measurement and Analysis of Adhesion Property of Lithium-Ion Battery Electrodes with SAICAS', ACS Appl. Mater. Interfaces, 6, 526-531 (2014).
  19. W. Haselrieder, B. Westphal, H. Bockholt, A. Diener, S. Hoft, and A. Kwade, 'Measuring the Coating Adhesion Strength of Electrodes for Lithium-Ion Batteries', Int. J. Adhes. Adhes., 60, 1-8 (2015).
  20. J. Choi, K. Kim, J. Jeong, K. Y. Cho, M.-H. Ryou, and Y. M. Lee, 'Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries', ACS Appl. Mater. Interfaces, 7, 14851-14858 (2015).
  21. K. Kim, S. Byun, I. Cho, M.-H. Ryou, and Y. M. Lee, 'Three-Dimensional Adhesion Map Based on Surface and Interfacial Cutting Analysis System for Predicting Adhesion Properties of Composite Electrode'. ACS Appl. Mater. Interfaces, 8, 23688-23695 (2016).
  22. S. Byun, Y. Roh, D. Jin, M.-H. Ryou, and Y. M. Lee, 'Analysis on Adhesion Properties of Composite Electrodes for Lithium Secondary Batteries using SAICAS', J. Korean Electrochem. Soc., 21, 28-38 (2018).
  23. K. Kim, S. Byun, J. Choi, S. Hong, M.-H. Ryou, and Y. M. Lee, 'Elucidating the Polymeric Binder Distribution within Lithium-Ion Battery Electrodes Using SAICAS', Chem. Phys. Chem., 19, 1627-1634 (2018).
  24. J. Choi, M.-H. Ryou, B. Son, J. Song, J.-K. Park, K. Y. Cho, and Y. M. Lee, 'Improved high-temperature performance of lithium-ion batteries through use of a thermally stable co-polyimide-based cathode binder', J. Power Sources, 252, 138-143 (2014).