Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe)

합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거

  • Lee, Joon Yeob (Life Environment R&D Center, Chemtopia Co. Ltd.) ;
  • Choi, Jeong-Hak (Department of Environmental Engineering, Catholic University of Pusan)
  • 이준엽 ((주)켐토피아 기업부설 생활환경연구소) ;
  • 최정학 (부산가톨릭대학교 환경공학과)
  • Received : 2018.06.20
  • Accepted : 2018.07.24
  • Published : 2018.07.31


In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.


Supported by : 부산가톨릭대학교, 한국연구재단


  1. Abid, H. R., Ang, H. M., Wang, S., 2012, Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66), Nanoscale, 4, 3089-3094.
  2. Abney, C. W., Taylor-Pashow, K. M. L., Russell, S. R., Chen, Y., Samantaray, R., Lockard, J. V., Lin, W., 2014, Topotactic transformations of metal-organic frameworks to highly porous and stable inorganic sorbents for efficient radionuclide sequestration, Chem. Mater., 26, 5231-5243.
  3. Alaton, I. A., Balcioglu, I. A., Bahnemann, D. W., 2002, Advanced oxidation of a reactive dyebath effluent: Comparison of $O_3$, $H_2O_2$/UV-C and $TiO_2$/UV-A processes, Water Res., 36, 1143-1154.
  4. Arstad, B., Fjellvag, H., Kongshaug, K. O., Swang, O., Blom, R., 2008, Amine functionalised Metal Organic Frameworks (MOFs) as adsorbents for carbon dioxide, Adsorption, 14, 755-762.
  5. Banat, I. M., Nigam, P., Singh, D., Marchant, R., 1996, Microbial decolorization of textile-dye-containing effluents: A Review, Bioresour. Technol., 58, 217-227.
  6. Chen, L. C., 2000, Effects of factors and interacted factors on the optimal decolorization process of methyl orange by ozone, Water Res., 34, 974-982.
  7. Choi, J. H., Kim, Y. H., 2016, Decolorization characteristics of acid and basic dyes using modified zero-valent Iron, J. Environ. Sci. Int., 25, 1717-1726.
  8. Das, M. C., Xu, H., Wang, Z., Srinivas, G., Zhou, W., Yue, Y. F., Nesterov, V. N., Qian, G., Chen, B., 2011, A $Zn_4O$-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orange, Chem. Commun., 47, 11715-11717.
  9. DeCoste, J. B., Peterson, G. W., 2014, Metal-organic frameworks for air purification of toxic chemicals, Chem. Rev., 114, 5695-5727.
  10. Fu, Y., Viraraghavan, T., 2001, Fungal decolorization of dye wastewaters: A Review, Bioresour. Technol., 79, 251-262.
  11. Gangu, K. K., Maddila, S., Mukkamala, S. B., Jonnalagadda, S. B., 2016, A Review on contemporary metal-organic framework materials, Inorganica Chim. Acta, 446, 61-74.
  12. Guo, H., Lin, F., Chen, J., Li, F., Weng, W., 2015, Metal-organic framework MIL-125(Ti) for efficient adsorptive removal of Rhodamine B from aqueous solution, Appl. Organomet. Chem., 29, 12-19.
  13. Hasan, Z., Jhung, S. H., 2015, Removal of hazardous organics from water using Metal-Organic Frameworks (MOFs): Plausible mechanisms for selective adsorptions, J. Hazard. Mater., 283, 329-339.
  14. Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Ferey, G., Morris, R. E., Serre, C., 2012, Metal-organic frameworks in biomedicine, Chem. Rev., 112, 1232-1268.
  15. Horiuchi, Y., Toyao, T., Saito, M., Mochizuki, K., Iwata, M., Higashimura, H., Anpo, M., Matsuoka, M., 2012, Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal-organic framework, J. Phys. Chem. C, 116, 20848-20853.
  16. Jhung, S. H., Khan, N. A., Hasan, Z., 2012, Analogous porous metal-organic frameworks: Synthesis, stability and application in adsorption, Cryst. Eng. Comm., 14, 7099-7109.
  17. Kang, S. F., Liao, C. H., Chen, M. C., 2002, Pre-oxidation and coagulation of textile wastewater by the Fenton process, Chemosphere, 46, 923-928.
  18. Khan, N. A., Hasan, Z., Jhung, S. H., 2013, Adsorptive removal of hazardous materials using Metal-Organic Frameworks (MOFs): A review, J. Hazard. Mater., 244-245, 444-456.
  19. Khan, N. A., Jhung, S. H., 2012, Adsorptive removal of benzothiophene using porous copper-benzenetricarboxylate loaded with phosphotungstic acid, Fuel Process. Technol., 100, 49-54.
  20. Khan, N. A., Jun, J. W., Jeong, J. H., Jhung, S. H., 2011, Remarkable adsorptive performance of a metal-organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene, Chem. Commun., 47, 1306-1308.
  21. Laurier, K. G., Vermoortele, F., Ameloot, R., de Vos, D. E., Hofkens, J., Roeffaers, M. B., 2013, Iron(III)-based metal-organic frameworks as visible light photocatalysts, J. Am. Chem. Soc., 135, 14488-14491.
  22. Lee, J. Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., Hupp, J. T., 2009, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450-1459.
  23. Li, J. R., Ma, Y., McCarthy, M. C., Sculley, J., Yub, J., Jeong, H. K., Balbuena, P. B., Zhou, H. C., 2011, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coord. Chem. Rev., 255, 1791-1823.
  24. Li, J. R., Sculley, J., Zhou, H. C., 2012, Metal-organic frameworks for separations, Chem. Rev., 112, 869-932.
  25. Lin, Y., Kong, C., Chen, L., 2012, Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for $CO_2$ capture, RSC Adv., 2, 6417-6419.
  26. Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R., 2012, Progress in adsorption-based $CO_2$ capture by metal-organic frameworks, Chem. Soc. Rev., 41, 2308-2322.
  27. Modrow, A., Zargarani, D., Herges, R., Stock, N., 2012, Introducing a photo-switchable azo-functionality inside Cr-MIL-101-$NH_2$ by covalent post-synthetic modification, Dalton Trans., 41, 8690-8696.
  28. Mutlu, S. H., Yetis, U., Gurkan, T., Yilmaz, L., 2002, Decolorization of wastewater of a baker's yeast plant by membrane processes, Water Res., 36, 609-616.
  29. Pendyal, B., Johns, M. M., Marshall, W. E., Ahmedna, M., Rao, R. M., 1999, Removal of sugar colorants by granular activated carbons made from binders and agricultural byproducts, Bioresour. Technol., 69, 45-51.
  30. Rocha, J., Carlos, L. D., Paz, F. A. A., Ananias, D., 2011, Luminescent multifunctional lanthanides-based metal-organic frameworks, Chem. Soc. Rev., 40, 926-940.
  31. Seo, P. W., Song, J. Y., Jhung, S. H., 2016, Adsorptive removal of hazardous organics from water with metal-organic frameworks, Appl. Chem. Eng., 27, 358-365.
  32. Suh, M. P., Park, H. J., Prasad, T. K., Lim, D. W., 2012, Hydrogen storage in metal-organic frameworks, Chem. Rev., 112, 782-835.
  33. Sun, J., Yu, G., Huo, Q., Kan, Q., Guan, J., 2014, Epoxidation of styrene over Fe(Cr)-MIL-101 metal-organic frameworks, RSC Adv., 4, 38048-38054.
  34. Uemura, T., Yanai, N., Kitagawa, S., 2009, Polymerization reactions in porous coordination polymers, Chem. Soc. Rev., 38, 1228-1236.
  35. Vu, T. A., Le, G. H., Dao, C. D., Dang, L. Q., Nguyen, K. T., Dang, P. T., Tran, H. T., Duong, Q. T., Nguyen, T. V., Lee, G. D., 2014, Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous photo-Fenton catalyst for reactive dye degradation, RSC Adv., 4, 41185-41194.
  36. Wu, H., Gong, Q., Olson, D. H., Li, J., 2012, Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks, Chem. Rev., 112, 836-868.
  37. Xu, W. T., Ma, L., Ke, F., Peng, F. M., Xu, G. S., Shen, Y. H., Zhu, J. F., Qiu, L. G., Yuan, Y. P., 2014, Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye, Dalton Trans., 43, 3792-3798.
  38. Zhang, Y., Li, G., Lu, H., Lv, Q., Sun, Z., 2014, Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials, RSC Adv., 4, 7594-7600.
  39. Zhang, Z., Li, X., Liu, B., Zhao, Q., Chen, G., 2016, Hexagonal microspindle of $NH_2$-MIL-101(Fe) metal-organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene, RSC Adv., 6, 4289-4295.
  40. Zhao, Z., Li, X., Huang, S., Xia, Q., Li, Z., 2011, Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation, Ind. Eng. Chem. Res., 50, 2254-2261.