DOI QR코드

DOI QR Code

Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe)

합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거

  • Lee, Joon Yeob (Life Environment R&D Center, Chemtopia Co. Ltd.) ;
  • Choi, Jeong-Hak (Department of Environmental Engineering, Catholic University of Pusan)
  • 이준엽 ((주)켐토피아 기업부설 생활환경연구소) ;
  • 최정학 (부산가톨릭대학교 환경공학과)
  • Received : 2018.06.20
  • Accepted : 2018.07.24
  • Published : 2018.07.31

Abstract

In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.

Acknowledgement

Supported by : 부산가톨릭대학교, 한국연구재단

References

  1. Abid, H. R., Ang, H. M., Wang, S., 2012, Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66), Nanoscale, 4, 3089-3094. https://doi.org/10.1039/c2nr30244f
  2. Abney, C. W., Taylor-Pashow, K. M. L., Russell, S. R., Chen, Y., Samantaray, R., Lockard, J. V., Lin, W., 2014, Topotactic transformations of metal-organic frameworks to highly porous and stable inorganic sorbents for efficient radionuclide sequestration, Chem. Mater., 26, 5231-5243. https://doi.org/10.1021/cm501894h
  3. Alaton, I. A., Balcioglu, I. A., Bahnemann, D. W., 2002, Advanced oxidation of a reactive dyebath effluent: Comparison of $O_3$, $H_2O_2$/UV-C and $TiO_2$/UV-A processes, Water Res., 36, 1143-1154. https://doi.org/10.1016/S0043-1354(01)00335-9
  4. Arstad, B., Fjellvag, H., Kongshaug, K. O., Swang, O., Blom, R., 2008, Amine functionalised Metal Organic Frameworks (MOFs) as adsorbents for carbon dioxide, Adsorption, 14, 755-762. https://doi.org/10.1007/s10450-008-9137-6
  5. Banat, I. M., Nigam, P., Singh, D., Marchant, R., 1996, Microbial decolorization of textile-dye-containing effluents: A Review, Bioresour. Technol., 58, 217-227. https://doi.org/10.1016/S0960-8524(96)00113-7
  6. Chen, L. C., 2000, Effects of factors and interacted factors on the optimal decolorization process of methyl orange by ozone, Water Res., 34, 974-982. https://doi.org/10.1016/S0043-1354(99)00188-8
  7. Choi, J. H., Kim, Y. H., 2016, Decolorization characteristics of acid and basic dyes using modified zero-valent Iron, J. Environ. Sci. Int., 25, 1717-1726. https://doi.org/10.5322/JESI.2016.25.12.1717
  8. Das, M. C., Xu, H., Wang, Z., Srinivas, G., Zhou, W., Yue, Y. F., Nesterov, V. N., Qian, G., Chen, B., 2011, A $Zn_4O$-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orange, Chem. Commun., 47, 11715-11717. https://doi.org/10.1039/c1cc12802g
  9. DeCoste, J. B., Peterson, G. W., 2014, Metal-organic frameworks for air purification of toxic chemicals, Chem. Rev., 114, 5695-5727. https://doi.org/10.1021/cr4006473
  10. Fu, Y., Viraraghavan, T., 2001, Fungal decolorization of dye wastewaters: A Review, Bioresour. Technol., 79, 251-262. https://doi.org/10.1016/S0960-8524(01)00028-1
  11. Gangu, K. K., Maddila, S., Mukkamala, S. B., Jonnalagadda, S. B., 2016, A Review on contemporary metal-organic framework materials, Inorganica Chim. Acta, 446, 61-74. https://doi.org/10.1016/j.ica.2016.02.062
  12. Guo, H., Lin, F., Chen, J., Li, F., Weng, W., 2015, Metal-organic framework MIL-125(Ti) for efficient adsorptive removal of Rhodamine B from aqueous solution, Appl. Organomet. Chem., 29, 12-19. https://doi.org/10.1002/aoc.3237
  13. Hasan, Z., Jhung, S. H., 2015, Removal of hazardous organics from water using Metal-Organic Frameworks (MOFs): Plausible mechanisms for selective adsorptions, J. Hazard. Mater., 283, 329-339. https://doi.org/10.1016/j.jhazmat.2014.09.046
  14. Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Ferey, G., Morris, R. E., Serre, C., 2012, Metal-organic frameworks in biomedicine, Chem. Rev., 112, 1232-1268. https://doi.org/10.1021/cr200256v
  15. Horiuchi, Y., Toyao, T., Saito, M., Mochizuki, K., Iwata, M., Higashimura, H., Anpo, M., Matsuoka, M., 2012, Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal-organic framework, J. Phys. Chem. C, 116, 20848-20853. https://doi.org/10.1021/jp3046005
  16. Jhung, S. H., Khan, N. A., Hasan, Z., 2012, Analogous porous metal-organic frameworks: Synthesis, stability and application in adsorption, Cryst. Eng. Comm., 14, 7099-7109. https://doi.org/10.1039/c2ce25760b
  17. Kang, S. F., Liao, C. H., Chen, M. C., 2002, Pre-oxidation and coagulation of textile wastewater by the Fenton process, Chemosphere, 46, 923-928. https://doi.org/10.1016/S0045-6535(01)00159-X
  18. Khan, N. A., Hasan, Z., Jhung, S. H., 2013, Adsorptive removal of hazardous materials using Metal-Organic Frameworks (MOFs): A review, J. Hazard. Mater., 244-245, 444-456. https://doi.org/10.1016/j.jhazmat.2012.11.011
  19. Khan, N. A., Jhung, S. H., 2012, Adsorptive removal of benzothiophene using porous copper-benzenetricarboxylate loaded with phosphotungstic acid, Fuel Process. Technol., 100, 49-54. https://doi.org/10.1016/j.fuproc.2012.03.006
  20. Khan, N. A., Jun, J. W., Jeong, J. H., Jhung, S. H., 2011, Remarkable adsorptive performance of a metal-organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene, Chem. Commun., 47, 1306-1308. https://doi.org/10.1039/C0CC04759G
  21. Laurier, K. G., Vermoortele, F., Ameloot, R., de Vos, D. E., Hofkens, J., Roeffaers, M. B., 2013, Iron(III)-based metal-organic frameworks as visible light photocatalysts, J. Am. Chem. Soc., 135, 14488-14491. https://doi.org/10.1021/ja405086e
  22. Lee, J. Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., Hupp, J. T., 2009, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450-1459. https://doi.org/10.1039/b807080f
  23. Li, J. R., Ma, Y., McCarthy, M. C., Sculley, J., Yub, J., Jeong, H. K., Balbuena, P. B., Zhou, H. C., 2011, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coord. Chem. Rev., 255, 1791-1823. https://doi.org/10.1016/j.ccr.2011.02.012
  24. Li, J. R., Sculley, J., Zhou, H. C., 2012, Metal-organic frameworks for separations, Chem. Rev., 112, 869-932. https://doi.org/10.1021/cr200190s
  25. Lin, Y., Kong, C., Chen, L., 2012, Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for $CO_2$ capture, RSC Adv., 2, 6417-6419. https://doi.org/10.1039/c2ra20641b
  26. Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R., 2012, Progress in adsorption-based $CO_2$ capture by metal-organic frameworks, Chem. Soc. Rev., 41, 2308-2322. https://doi.org/10.1039/C1CS15221A
  27. Modrow, A., Zargarani, D., Herges, R., Stock, N., 2012, Introducing a photo-switchable azo-functionality inside Cr-MIL-101-$NH_2$ by covalent post-synthetic modification, Dalton Trans., 41, 8690-8696. https://doi.org/10.1039/c2dt30672g
  28. Mutlu, S. H., Yetis, U., Gurkan, T., Yilmaz, L., 2002, Decolorization of wastewater of a baker's yeast plant by membrane processes, Water Res., 36, 609-616. https://doi.org/10.1016/S0043-1354(01)00252-4
  29. Pendyal, B., Johns, M. M., Marshall, W. E., Ahmedna, M., Rao, R. M., 1999, Removal of sugar colorants by granular activated carbons made from binders and agricultural byproducts, Bioresour. Technol., 69, 45-51. https://doi.org/10.1016/S0960-8524(98)00172-2
  30. Rocha, J., Carlos, L. D., Paz, F. A. A., Ananias, D., 2011, Luminescent multifunctional lanthanides-based metal-organic frameworks, Chem. Soc. Rev., 40, 926-940. https://doi.org/10.1039/C0CS00130A
  31. Seo, P. W., Song, J. Y., Jhung, S. H., 2016, Adsorptive removal of hazardous organics from water with metal-organic frameworks, Appl. Chem. Eng., 27, 358-365. https://doi.org/10.14478/ace.2016.1048
  32. Suh, M. P., Park, H. J., Prasad, T. K., Lim, D. W., 2012, Hydrogen storage in metal-organic frameworks, Chem. Rev., 112, 782-835. https://doi.org/10.1021/cr200274s
  33. Sun, J., Yu, G., Huo, Q., Kan, Q., Guan, J., 2014, Epoxidation of styrene over Fe(Cr)-MIL-101 metal-organic frameworks, RSC Adv., 4, 38048-38054. https://doi.org/10.1039/C4RA05402D
  34. Uemura, T., Yanai, N., Kitagawa, S., 2009, Polymerization reactions in porous coordination polymers, Chem. Soc. Rev., 38, 1228-1236. https://doi.org/10.1039/b802583p
  35. Vu, T. A., Le, G. H., Dao, C. D., Dang, L. Q., Nguyen, K. T., Dang, P. T., Tran, H. T., Duong, Q. T., Nguyen, T. V., Lee, G. D., 2014, Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous photo-Fenton catalyst for reactive dye degradation, RSC Adv., 4, 41185-41194. https://doi.org/10.1039/C4RA06522K
  36. Wu, H., Gong, Q., Olson, D. H., Li, J., 2012, Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks, Chem. Rev., 112, 836-868. https://doi.org/10.1021/cr200216x
  37. Xu, W. T., Ma, L., Ke, F., Peng, F. M., Xu, G. S., Shen, Y. H., Zhu, J. F., Qiu, L. G., Yuan, Y. P., 2014, Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye, Dalton Trans., 43, 3792-3798. https://doi.org/10.1039/C3DT52574K
  38. Zhang, Y., Li, G., Lu, H., Lv, Q., Sun, Z., 2014, Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials, RSC Adv., 4, 7594-7600. https://doi.org/10.1039/c3ra46706f
  39. Zhang, Z., Li, X., Liu, B., Zhao, Q., Chen, G., 2016, Hexagonal microspindle of $NH_2$-MIL-101(Fe) metal-organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene, RSC Adv., 6, 4289-4295. https://doi.org/10.1039/C5RA23154J
  40. Zhao, Z., Li, X., Huang, S., Xia, Q., Li, Z., 2011, Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation, Ind. Eng. Chem. Res., 50, 2254-2261. https://doi.org/10.1021/ie101414n