Design and Implementation of Potential Advertisement Keyword Extraction System Using SNS

SNS를 이용한 잠재적 광고 키워드 추출 시스템 설계 및 구현

  • Seo, Hyun-Gon (Department of Information Communication Software, Halla University) ;
  • Park, Hee-Wan (Department of Information Communication Software, Halla University)
  • 서현곤 (한라대학교 정보통신소프트웨어학과) ;
  • 박희완 (한라대학교 정보통신소프트웨어학과)
  • Received : 2018.04.25
  • Accepted : 2018.07.20
  • Published : 2018.07.28


One of the major issues in big data processing is extracting keywords from internet and using them to process the necessary information. Most of the proposed keyword extraction algorithms extract keywords using search function of a large portal site. In addition, these methods extract keywords based on already posted or created documents or fixed contents. In this paper, we propose a KAES(Keyword Advertisement Extraction System) system that helps the potential shopping keyword marketing to extract issue keywords and related keywords based on dynamic instant messages such as various issues, interests, comments posted on SNS. The KAES system makes a list of specific accounts to extract keywords and related keywords that have most frequency in the SNS.


Big data;Keyword marketing;SNS;Issue keyword;Related keyword


Supported by : Korea Technology and Information Promotion Agency


  1. J. C. Choi.(2018). Big Data Patent Analysis Using Social Network Analysis. Journal of the Korea Convergence Society, 9(2), 251-257.
  2. S. A. Jin, C. E. Heo, Y. K. Jeong & M. Song. (2013). Topic-Network based Topic Shift Detection on Twitter. Journal of the Korean Society for Information Management, 30(1), 285-302.
  3. Y. H. Ha, S. W. Lim, & Y. H. Kim. (2012). Trend Analysis through Content-based Tweet Clustering. Fall conference of Korea Information Science Society, 39(2B).
  4. M. Mathioudakis & N. Kousdas. (2010). Twitter Monitor : Trend Detection over the Twitter Stream, ACM Special Interest Group on Management of Data, 1155-1157.
  5. DMC Media. (2016). Facebook Targeting Strategies and Success Stories, Digital Media & Marketing Intelligence Center report.
  6. D. Y. Kim, G. G. Lim, & D. C. Lee. (2011). A Study on the Efficiency of internet Keyword Advertisement According to CPM and CPC Methods by Analyzing Transaction Data. The Journal of Society for e-Business Studies, 16(4), 139-154.
  7. M. G. Kim, N. G. Kim. & I. H. Jung. (2014). A Methodology for Extracting Shopping-Related Keywords by Analyzing Internet Navigation Patterns. Journal of Intelligence and Information Systems, 20(2). 123-136.
  8. S. J. Choi, M. Y. Son. & Y. H. Kim. (2016). Associated Keyword Recommendation System for Keyword-based Blog Marketing. KIISE Transaction on Computing Practices, 22(5). 246-251.
  9. T. M. Cho. & J. H. Lee. (2015). Latent Keyphrase Extraction Using LDA Model. Journal of Korean institute of Intelligent System 25(2), 180-185.
  10. W. You, D. Fontaine & J. P. Barthes. (2013). An Automatic keyphrase system for scientific documents. Knowledge and information systems, 34(3). 691-724.
  11. Twitter 4J library for Twitter SNS Parsing.
  12. JSON simple library for Facebook SNS Parsing.
  13. Korean morphological analyzer, Komoran.
  14. MySQL Community Server 5.5.
  15. Java and database connector, Connector J 5.1.
  16. Y. H. Chang. .(2012). A Study on the Marketing Performance Using Social Media- Comparison between Portal Advertisement, Blog, and SNS Channel Characteristics and Performance. Journal of Digital Convergence, 10(8). 119-133.
  17. S. B. Chang, & D. S. Yoom. (2018). The Effects of User Experience on Facebook Acceptance Behavior and Advertising Acceptance Behavior. Journal of Digital Convergence, 16(3). 169-179.