DOI QR코드

DOI QR Code

나노 Ruthenium Oxide 고분자 복합재료 pH전극

박종만
Park, Jongman

  • 투고 : 2018.05.15
  • 심사 : 2018.06.06
  • 발행 : 2018.08.20

초록

금속산화물 고분자 복합재료전극 제조기법을 수소이온 감응성이 높은 $RuO_2$에 적용하여 표면연마가 가능한 나노 $RuO_2$ 복합재료 pH전극을 제조하였다. $RuO_2$ 함량 53 wt%을 가지는 나노 $RuO_2$ 복합재료 전극의 경우 나노 $IrO_2$ 복합재료 전극과 비슷한 수소이온 감응특성을 나타내었다. pH 1~9의 범위에서 이론치에 가까운 -58.7 mV/pH의 감응기울기, 1초 이하의 감응속도, 평균 $-57.0{\pm}0.3mV/pH$ (n=5)의 표면재생성, 장기 안정성 등 제반 특성과 전기화학적으로 활성이 높은 화학종에 의한 방해효과도 비슷하게 나타났다. 그러나 pH 10 이상의 염기성 용액에서의 감응기울기와 감응속도는 나노 $IrO_2$ 복합재료전극에 비하여 현저히 떨어지는 결과를 보였으며 이는 복합재료 매질 속의 금속산화물 함량에 따른 물리적 성질 차이에 따른 것으로 추측된다.

키워드

pH전극;복합재료전극;나노 Ruthenium oxide

참고문헌

  1. Fog, A.; Buck, R. P. Sens. Actuators 1984, 5, 137. https://doi.org/10.1016/0250-6874(84)80004-9
  2. Kreider, K. G.; Tarlov, M. J.; Cline, J. P. Sens. Actuators B 1995, 28, 167. https://doi.org/10.1016/0925-4005(95)01655-4
  3. Kinoshita, K.; Madou, M. J. J. Electrochem. Soc. 1984, 131, 1089. https://doi.org/10.1149/1.2115755
  4. Burke, L. D.; Mucahy, J. K., Whelan D. P. J. Electroanal. Chem.1984, 163, 117. https://doi.org/10.1016/S0022-0728(84)80045-5
  5. Gab, S.; Hulanicki, A.; Edwall, G.; Ingman, F. Crit. Rev. Anal. Chem. 1989, 21, 29. https://doi.org/10.1080/10408348908048815
  6. Huang, W.-D.; Cao, H.; Deb, S.; Chiao, M.; Chiao, J. C. Sens. Actuators A. 2011, 169, 1. https://doi.org/10.1016/j.sna.2011.05.016
  7. Tarlov, M. J.; Semancik, S.; Kreider, K. G. Sens. Actuators B 1990, 1, 293. https://doi.org/10.1016/0925-4005(90)80218-O
  8. Pasztor, K.; Sekiguchi, A.; Shimo, N.; Kitamura, N.; Masuhara, H. Sens. Actuators B 1993, 12, 225. https://doi.org/10.1016/0925-4005(93)80023-5
  9. Wipf, D. O.; Ge, F.; Spaine, T. W.; Baur, J. E. Anal. Chem. 2000, 72, 4921. https://doi.org/10.1021/ac000383j
  10. Bezbaruah, A. N.; Zhang, T. C. Anal. Chem. 2002, 74, 5726. https://doi.org/10.1021/ac020326l
  11. Wang, M.; Yao, S.; Madou, M. Sens. Actuators B 2002, 81, 313. https://doi.org/10.1016/S0925-4005(01)00972-8
  12. Park, S.; Boo, H.; Kim, Y.; Han, J.-H.; Kim, H. C.; Chung, T. D. Anal. Chem. 2005, 77, 7695. https://doi.org/10.1021/ac050968j
  13. da Silva, G. M.; Lemos, S. G.; Procrifka, L. A.; Marreto, P. D.; Rosario, A. V.; Pereira, E. C. Anal. Chim. Acta, 2008, 616, 36. https://doi.org/10.1016/j.aca.2008.03.019
  14. Ryynanen, T.; Nurminen, K.; Hamalainen, J.; Leskela, M.; Lekkala, J. Procedia Eng. 2010, 5, 548. https://doi.org/10.1016/j.proeng.2010.09.168
  15. Carroll, S.; Baldwin, R. P. Anal. Chem. 2010, 82, 878. https://doi.org/10.1021/ac9020374
  16. Kakooei, S.; Che, I. M.; Ari-Wahjoedi, B. Int. J. Electrochem. Sci. 2013, 8, 3290.
  17. Huang, F.; Jin, Y.; Wen, L.; Mu, D.; Cui, M. J. Electrochem. Soc. 2013, 160, B184. https://doi.org/10.1149/2.006310jes
  18. Ardizzone, S.; Carigati, A.; Trasatti, S. J. Electroanal. Chem. 1981, 126, 287. https://doi.org/10.1016/S0022-0728(81)80437-8
  19. Katsube, T; Lauks, I.; Zemel, J. N. Sens. Actuators 1982, 2, 399.
  20. Quan, H.; Kim, W.; Chung, K.-C.; Park, J. Bull. Korean Chem. Soc. 2005, 26, 1565. https://doi.org/10.5012/bkcs.2005.26.10.1565
  21. Park, J.; Kim, J.; Quan, H. Microchem. J. 2010, 95, 102. https://doi.org/10.1016/j.microc.2009.11.006
  22. Park, J.; Kim, M.; Kim, S. Sens. Actuators B 2014, 204, 197. https://doi.org/10.1016/j.snb.2014.07.104
  23. Shaw, B. R.; Creasy, K. E. Anal. Chem. 1988, 60, 1241. https://doi.org/10.1021/ac00162a029
  24. Park, J.; Shaw, B. R. Anal. Chem. 1989, 61, 848. https://doi.org/10.1021/ac00183a013

과제정보

연구 과제 주관 기관 : 건국대학교