A Basic Study on Accelerated Life Test Method and Device of DSA (Dimensionally Stable Anode) Electrode

촉매성 산화물 전극 (DSA, Dimensionally Stable Anode)의 가속수명 테스트 방법과 장치에 관한 기초 연구

  • Kim, Dong-Seog (Department of Environmental Science, Catholic University of Daegu) ;
  • Park, Young-Seek (Division of Creative Integrater General Studies, Daegu University)
  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 창조융합학부)
  • Received : 2017.05.09
  • Accepted : 2017.08.10
  • Published : 2018.06.30


The lifetime of the electrode is one of the most important factors on the stability of the electrode. Since the lifetime of the DSA (Dimensionally stable anode) electrode is long, an accelerated lifetime test is required to reduce the test time. Beacuse there is no basis or standard method for accelerated lifetime testing, many researchers use different methods. Therefore, there is a need for basis and methods for accelerated lifetime testing that other researchers can follow. We designed a reactor system for accelerated lifetime testing and planned specific methods. Reactor system was circulating batch reactor. Reactor volume and cooling water tank were 12.5 L and 100 L, respectively. Electrode size was $2cm{\times}3cm$ (real electrolysis area, $5cm^2$). In order to maintain the harsh conditions, accelerated lifetime test was carried out in a high current density ($0.6A/cm^2$) and low electrolyte concentration (NaCl, 0.068 mol/L). Maintaining a constant temperature was an important operation parameter for exact accelerated lifetime test. As the accelerated lifetime test progressed, the active component of electrode surface was consumed and desorption occurred. At the point of 5 V rise, corrosion of the surface of the base material(titanium) also started.


Dimensionally stable anode;Accelerated lifetime test;Electrolysis;Stability;Temperature preserve


  1. Chen, G., 2004, Electrochemical technologies in wastewater treatment, Sep. Puri. Tech., 38, 11-41.
  2. Chen, S., Zheng, Y., Wang, S., Chen, X., 2011, $Ti/RuO_2-Sb_2O_5-SnO_2$ electrodes for chlorine evolution from seawater, Chem. Eng. J., 172, 47-51.
  3. Chen, X., Chen, G., 2005, Stable $Ti/RuO_2-Sb_2O_5-SnO_2$-electrodes for $O_2$ evolution, ELECTROCMICA Acta, 50, 4155-4159.
  4. Comninellis, C., Vercesi, G. P., 1991, Characteriazation of DSA-type oxtgen evolving electrodes: Choice of a coating, J. Appl. Electrochem., 21, 335-345.
  5. Cui, X., Zhao, G., Lei, Y., Li, H., Li, P., Liu, M., 2009, Novel vertically aligned $TiO_2$ nanotubes embedded with Sb-doped $SnO_2$ electrode with high oxygen evolution potential and long service time, Mater. Chem. Phy., 113, 314-321.
  6. Cestarolli, D. T., De Andrade, A. R., 2003, Electrochemical and morphological properties of $Ti/R_{0.3}Pb(0.7-x)TixO_2$-coated electrodes, ELECTRO-CMICA Acta, 48, 4137-4142.
  7. Chae, K. S., Choi, H. K., Ahn, J. H., Song, Y. S., Lee, D. Y., 2002, Effect of organic vehicle addition on service lifetime of $Ti/IrO_2-RuO_2$ electrodes, Mater. Let., 55, 211-216.
  8. Ding, H. Y., Feng, Y. J., Liu, J. F., 2007, Preparation and properties of $Ti/SnO_2-Sb_2O_3$ electrodes by electrodeposition, Mater. Let., 61, 4920-4923.
  9. Hu, J. M., Sun, X. J., Hou, Y. Y., Zhang, J. Q., Cao, C. N., 2008, Degradation characteristics of $IrO_2$-type DSA in methanol aqueous solutions, ELECTROCMICA Acta, 53, 3127-3138.
  10. Hyunsung E&E, 2013,
  11. Jia, J., Li, X, Chen, G., 2010, Stable spinel type cobalt and copper oxide electrodes for $O_2$ and $H_2$ evolutions in alkaline solution, ELECTROCMICA Acta, 55, 8197-8206.
  12. Jung, Y. M., Yoon, Y. J., Hong, E. K., Kwon, M. H., Kang, J. W., 2013, Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe, Mar. Pol. Bull., 72, 71-79.
  13. Juttner, K., Galla, U., Schmieder, H., 2000, Electro-chemical approaches to environmental problems in the process industry, ELECTROCMICA Acta, 45, 2575-2594.
  14. Kim, D. S., Park, Y. S., 2007, Electrochemical decolorization of a rhodamine B using dimensionally stable anode, J. Kor. Soc. Wat. Qual., 23, 377-384.
  15. Kim, D. S., Park, Y. S., 2009, A Study on the preparation of the Dimensionally Stable Anode(DSA) with high generation rate of oxidation(II), J. Environ. Sci., 18, 49-60.
  16. Kim, D. S., Park, H. J., Yoon, J. M., Park, Y. S., Park, Y. D., 2014, Effect of cathode in electrochemical reaction for treating ballast water, J. Environ. Sci. Int., 23, 1175-1182.
  17. Kim, K. W., Lee, E. H., Kim, J. S., Shin, K. H., Jung, B. I., Kim, K. H., 2002, Performance improvement of Ir oxide electrode for organic destruction, HWAHAK KONGHAK, 40, 146-151.
  18. Kim, K. W., Lee, E. H., Kim, J. S., Shin, K. H., Kim, K. H., 2001, Electro-activity and life time properties of Ru-Sn-Ti ternary mixed oxide/ti electrode(II), HWAHAK KONGHAK, 39, 138-143.
  19. Liu, Y., Liu, H., Ma, J., Li, J., 2011, Investigation on electrochemical properties of cerium lead dioxide anode and application for elimination of nitrophenol, ELECTROCMICA Acta, 56, 1352-1360.
  20. Park, Y. S., Lee, J. H., Park, Y. S., Kim, D. S., 2013, Study on accelerated life test of insoluble electrode, Proceeding of the Kor. Environ. Sci. Soc. Conf., 22, 260-265.
  21. Song, Y., Wei, G., Xiong, R., 2007, Structure and Properties of $PbO_2-CeO_2$ anodes on stainless steel, ELECTROCMICA Acta, 52, 7022-7027.
  22. Xu, L., Xin, Y., wang, J., 2009, A Comparative study on $IrO_2-Ta_2O_5$ coated titanium electrodes prepared with different methods, ELECTROCMICA Acta, 54, 1820-1825.
  23. Yi, Z., Kangning, C., Wei, W., Wang, J., Leem, S., 2007, Effect of $IrO_2$ loading on $RuO_2-IrO_2-TiO_2$ anodes: A Study of microstructure working life for the chlorine evolution reaction, Ceramics Int., 33, 1087-1091.
  24. Zheng, Y., Su, W., Chen, S., Wu, X., Chen, X., 2011, $Ti/SnO_2-Sb_2O_5-RuO_2/{\alpha}-PbO_2/{\beta}-PbO_2$ electrodes for pollutants degradation, Chem. Eng. J., 174, 304-309.