기술, 개인, 상황 특성이 모바일 간편 결제서비스 이용의도에 미치는 영향 : 주관적 규범의 조절효과

Technical, Individual and Situational Factors Affecting Intention to Use of Mobile Easy Payment Service : Focusing on the Moderating Effects of Subjective Norms

  • 박현선 (경북대학교 경영학부 BK21+) ;
  • 김상현 (경북대학교 경영학부)
  • Park, Hyunsun (School of Business Administration, Kyungpook National University) ;
  • Kim, Sanghyun (School of Business Administration, Kyungpook National University)
  • 투고 : 2018.04.11
  • 심사 : 2018.06.20
  • 발행 : 2018.06.28


정보통신기술의 발달, 스마트폰의 보편화, 정부의 규제완화 등에 힘입어 모바일 간편 결제서비스가 주요한 금융서비스로 빠르게 성장하고 있다. 이에 본 연구는 모바일 간편 결제서비스 이용의도에 어떤 요인들이 영향을 미치는지를 실증분석을 통해 살펴보고자 하며, 총 386명의 자료를 수집하여 AMOS 22.0을 이용해 분석하였다. 연구결과, 기술적 특성(상대적 이점, 보안성), 개인 특성(자기효능감), 상황적 특성(기존서비스신뢰, 기존서비스만족)이 지각된 가치에 정(+)의 영향을 미치는 것으로 나타났다. 또한, 지각된 가치는 모바일 간편 결제서비스 이용의도에 정(+)의 영향을 미치는 것으로 나타났다. 마지막으로 주관적 규범은 지각된 가치와 모바일 간편 결제서비스 이용의도 간의 관계를 강화하는 것으로 나타났다. 본 연구의 결과는 모바일 간편 결제서비스 관련 기업과 관련 연구 분야에 유용한 정보를 제공할 수 있을 것으로 기대한다.


  1. E. Y. Cho & H. W. Kim. (2015). A Study on the Promotion of Mobile Easy Payment Services in the Fintech Era. Information Policy, 22(4), 22-44.
  2. C. H. Chae. (2017). Competing Easy Payment Services, ICT Spot Issue.
  3. Korea Consumer Agency. (2016). Research of Mobile Easy Payment Services.
  4. S. H. Kim & H. S. Park. (2017). Impacts of Individual and Technical Characteristics on Perceived Risk and User Resistance of Mobile Payment Services. Journal of Digital Convergence, 15(12), 239-253. DOI :10.14400/JDC.2017.15.12.239
  5. S. D. Kim, J. I. Lim & S. B. Yang. (2016). An Empirical Study on Influencing Factors of Intention to Use Third-Party Mobile Payment Services: Applying the Task-Technology Fit Model. Journal of the Korea Society of IT Servces, 15(2), 185-201. DOI : 10.9716/KITS.2016.15.2.185
  6. C. K. Kim, J. G. Kim & S. J. Choi. (2017). A Study on the Acceptance Decision Factors for Mobile Easy Payment Services in Digital Convergence Media Ara: Focusing Samsung Pay. Journal of Digital Convergence, 15(4), 213-221. DOI : 10.14400/JDC.2017.15.4.213
  7. T. L. Zhang & J. H. Lee. (2016). A Study on the Use Intention of Easy Mobile Payment Services. The e-Business Studies, 17(6), 203-218. DOI :10.20462/TeBS.2016.
  8. J. H. Han, S. H. Jae, B. H. Kim & J. S. Park. (2015). Effects of Consumer Trust and Perceived Usefulness on Mobile Payments and Online Shopping Website Loyalty, Journal of Digital Convergence, 13(12), 75-87. DOI : 10.14400/JDC.2015.13.12.75
  9. V. A. Zeithaml. (1988). Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. The Journal of Marketing, 52, 2-22. DOI : 10.2307/1251446
  10. H. W. Kim, H. C. Chan & S. Gupta. (2007). Value-based Adoption of Mobile Internet: An Empirical Investigation. Decision Support Systems, 43(1), 111-126. DOI : 10.1016/j.dss.2005.05.009
  11. Z. Deng, Y. Lu, K. K. Wei & J. Zhang. (2010). Understanding Customer Satisfaction and Loyalty: An Empirical Study of Mobile Instant Messages in China. International Journal of Information Management, 30, 289-300. DOI : 10.1016/j.ijinfomgt.2009.10.001
  12. H. Y. Wang & S. H. Wang. (2010). Predicting Mobile Hotel Reservation Adoption: Insight from a Perceived Value Standpoint. International Journal of Hospitality Management, 29(4), 598-608. DOI : 10.1016/j.ijhm.2009.11.001
  13. H. F. Lin. (2011). An Empirical Investigation of Mobile Banking Adoption: The Effect of Innovation Attributes and Knowledge-based Trust. International Journal of Information Management, 31, 252-260. DOI : 10.1016/j.ijinfomgt.2010.07.006
  14. J. Hwang & H. S. Yu. (2016). A Study of Factors Affecting the Intention to Use a Mobile Easy Payment Service: An Integrated Extension of TAM with Perceived Risk. Journal of Information Technology and Architecture, 13(2), 291-306.
  15. W. D. Salisbury, R. Pearson, A. Pearson & D. W. Miller. (2001). Perceived Security and WWW Purchase Intention. Industrial Management & Data Systems, 101(4), 165-177. DOI : 10.1108/02635570110390071
  16. D. H. Shin. (2009). Towards an Understanding of Consumer Acceptance of Mobile Wallet. Computers in Human Behavior, 25, 1343-1354. DOI : 10.1016/j.chb.2009.06.001
  17. C. A. Lee, H. J. Yun, C. H. Lee & C. Choong. (2015). Factors Affecting Continuous Intention to Use Mobile Wallet: Based on Value-based Adoption Model. The Journal of Society for e-Business Studies, 20(1), 117-135. DOI : 10.7838/jsebs.2015.20.1.117
  18. C. W. Park & V. P. Lessig. (1981). Familiarity and Its Impact on Consumer Decision Biases and Heuristic. Journal of Consumer Research, 8, 223-230. DOI : 10.1086/208859
  19. Y. S. Park & M. H. Han. (2001). The Effects of Perceived Risk and Perceived Quality on the Consumers Online Buying Behavior. Journal of Korean Marketing Association, 16(1), 59-84.
  20. T. M. Lee. (2001). Application of the Technology Acceptance Model to Mobile Commerce Context. The Korean Academic Association of Business Administration, 17(5), 2183-2209.
  21. A. Bandura. (1997). Self-Efficacy: The Exercise of Control. New York: WH Freeman & Co..
  22. Y. S. Han & Y. J. Kim. Structural Relationship among SNS Users' Self-efficacy, Social Exchange Benefits, Perceived Value and User Loyalty. The Journal of Internet Electronic Commerce Research, 13(3), 89-110.
  23. S. M. Jung. (2017). A Comparative Study of Factors Affecting the Intention to Use Mobile Payment Services: Focusing on the Types of Mobile Payment Services and Different Age Groups. Journal of the Korea Academia-Industrial Cooperation Society, 18(9), 101-112.
  24. K. C. Lee, I. Kang & D. H. McKnight. (2007). Transfer from Offline Trust to Key Online Perceptions: An Empirical Study. IEEE Transactions on Engineering Management, 54(4), 729-741. DOI : 10.1109/tem.2007.906851
  25. F. M. Tseng & H. Y. Chiang. (2013). Exploring Consumers to Buy Innovative Products: Mobile Phone Upgrading Intention. Journal of High Technology Management Research, 24, 77-87. DOI : 10.1016/j.hitech.2013.09.002
  26. G. Premkumar & A. Bhattacherjee. (2008). Explaining Information Technology Usage: A Test of competing Models. Omega, 36, 64-75. DOI : 10.1016/
  27. M. M. Al-Debei & E. Al-Lozi. (2014). Explaining and Predicting the Adoption Intention of Mobile Data Services: A Value-based Approach. Computers in Human Behavior, 35, 326-338. DOI : 10.1016/j.chb.2014.03.011
  28. S. H. Yang, Y. S. Hwang & J. K. Park. (2016). A Study on the Use of Fintech Payment Services Based on the UTAUT Model. Journal of Management & Economics, 38(1), 183-209.
  29. J. C. Nunnally. (1978). Psychometric Theory (2nd), New York: McGraw-Hill.
  30. D. W. Barclay, C. A. Higgins & R. L. Thompson. (1995). The Partial Least Squares(PLS) Approach to Causal Modeling: Personal Computer Adoption and Use as an Illustration. Technology Studies, 2(2), 285-309.
  31. C. Fornell & D. F. Larcker. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382-388. DOI : 10.2307/3151335
  32. R. M. Baron & D. A. Kenny. (1986). The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. Journal of Personality & Social Psychology, 51(6), 1173-1182. DOI : 10.1037//0022-3514.51.6.1173
  33. G. Premkumar & K. Ramamurthy. (1995). The Role of Interorganizational and Organizational Factors on the Decision Model or Adoption of Interorganizational Systems. Decision Sciences, 26(3), 303-336. DOI : 10.1111/j.1540-5915.1995.tb01431.x
  34. J. S. Lee & J. H. Park. (2018). The Effects of Characteristics of User and System on the Perceived Cognition and the Continuous Use Intention of Fintech. Journal of the Korea Convergence Society, 9(1), 291-301.