The Japanese Wagyu beef industry: current situation and future prospects - A review

  • Gotoh, Takafumi (Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture, Kagoshima University) ;
  • Nishimura, Takanori (Muscle Biology and Meat Science laboratory, Research Faculty of Agriculture, Hokkaido University) ;
  • Kuchida, Keigo (Obihiro University of Agriculture and Veterinary Medicine) ;
  • Mannen, Hideyuki (Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University)
  • Received : 2018.04.30
  • Accepted : 2018.06.05
  • Published : 2018.07.01


In Japan, Wagyu cattle include four Japanese breeds; Black, Brown, Shorthorn, and Polled. Today, the renowned brand name Wagyu includes not only cattle produced in Japan, but also cattle produced in countries such as Australia and the United States. In recent years, the intramuscular fat percentage in beef (longissimus muscle) from Japanese Black cattle has increased to be greater than 30%. The Japanese Black breed is genetically predisposed to producing carcass lipids containing higher concentrations of monounsaturated fatty acids than other breeds. However, there are numerous problems with the management of this breed including high production costs, disposal of untreated excrement, the requirement for imported feed, and food security risks resulting from various viral diseases introduced by imported feed. The feeding system needs to shift to one that is more efficient, and improves management for farmers, food security for consumers, and the health environment for residents of Japan. Currently, we are developing a metabolic programming and an information and communications technology (ICT, or Interne of Things) management system for Wagyu beef production as future systems. If successful, we will produce safe, high-quality Wagyu beef using domestic pasture resources while solving the problems of how to utilize increasing areas of abandoned agricultural land and to make use of the plant-based feed resources in Japan's mountainous areas.


Supported by : KAKENHI, Japan Society for the Promotion of Science (JSPS), CANON Foundation


  1. Hornstein I, Wasserman A. Sensory characteristics of meat. Part 2-Chemistry of meat flavor. In: Price JF, Schweigert BS, editors. The science of meat and meat products. 3rd ed. Westport, CT: Food and Nutrition Press; 1987. p. 329-47.
  2. Wheeler TL, Cundiff LV, Koch M. Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. J Anim Sci 1994;72:3145-51.
  3. Nishimura T, Hattori A, Takahashi K. Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: effect of marbling on beef tenderization. J Anim Sci 1999;77:93-104.
  4. Horii H, Sakurai Y, Kanbe Y, et al. Relationship between Japanese beef marbling Standard numbers and intramuscular lipid in M. longissimus thoracis of Japanese Black steers from 1996 to 2004. Anim Sci J 2009;80:55-61 (in Japanese).
  5. Sondik SB, Copperman N, Jacobson MS. Effects of a low-carbohydrate diet on weight loss and cardiovascular risk factors in over weight adolescents. J Pediatr 2003;142:253-8.
  6. Johnston CS, Tjonn SL, Swan PD. High-protein, low-fat diets are effective for weight loss and favorably alter biomarkers in healthy adults. J Nutr 2004;134:586-91.
  7. Morita S, Iwamoto H, Fukumitsu Y, et al. Histochemical studies on the skeletal muscles in fattened Mishima steers. Anim Sci J 2000;71:J51-9.
  8. Gotoh T, Albrecht E, Teuscher F, et al. Differences in muscle and fat accretion in Japanese Black and European cattle. Meat Sci 2009;82:300-8.
  9. Albrecht E, Gotoh, T, Ebara F, et al. Cellular conditions for intramuscular fat deposition in Japanese Black and Holstein steers. Meat Sci 2011;89:13-20.
  10. May SG, Sturdivant CA, Lunt SK, Miller RK, Smith SB. Comparison of sensory characteristiics and fatty acid composition between Wagyu and crossbred and Angus steers. Meat Sci 1993;35:289-98.
  11. Greenwood PL, Cafe LM, Hearnshaw H, et al. Long-term consequences of birth weight and growth to weaning for carcasss, yield and beef quality characteristics of Piedmontese- and Wagyu-sired cattle. Aust J Exp Agric 2006;46:257-69.
  12. Greenwood PL, Cafe LM, Hearnshaw H, Hennessy DW, Morris SG. Consequence of prenatal and preweaning growth for yield of primal cuts from 30 months of-old Piedmontese- and Wagyu-sired cattle. Anim Prod Sci 2009;49:468-78.
  13. Café LM, Hennessy DW, Hearnshaw H, Morris SG, Greenwood PL. Influences of nutrition during pregnancy and lactation on birthweights and growth to weaning of calves sired by Piedmontese or Wagyu bulls. Aust J Exp Agric 2006;46:245-55.
  14. Café LM, Hennessy DW, Hearnshaw H, Morris SG, Greenwood PL. Consequence of prenatal and preweaning growth for feedlot growth, intake and efficiency of Piedmontese and Wagyu-sired cattle. Anim Prod Sci 2009;49:461-7.
  15. Zembayashi M, Nishimura K, Lunt DK, Smith SB. Effect of breed type and sex on the fatty acid composition of subcutaneous and intramuscular lipids of finishing steers and heifers. J Anim Sci 1995;73:3325-32.
  16. Gotoh T, Takahashi H, Nishimura T, Kuchida K, Mannen H. Meat produced by Japanese black cattle and wagyu. Anim Front 2014;4:46-54.
  17. Wagyu International [internet], Wagyu international: Australian Wagyu Association [cited 2013]. Wagyu International; Available from:
  18. Villarroya F, Giralt M, Iglesias R. Retinoids and adipose tissues: metabolism, cell differentiation and gene expression. Int J Obes 1999;23:1-6.
  19. Oka A, Maruo Y, Miki T, Yamasaki T, Saito T. Influence of Vitamin a on the quality of beef from the Tajima strain of Japanese Black cattle. Meat Sci 1998;48:159-67.
  20. Nade T, Masuda Y, Misumi S, Fujita K. Effects of Vitamin A restriction on growth and carcass characteristics of Japanese Black steers measured by ultrasonic equipment. Anim Sci J 2007;78:161-6 (in Japanese).
  21. Japan Meat Grading Association (JMGA). Beef carcass trading standards. Tokyo, Japan: JMGA; 2014
  22. Japan Meat Grading Association (JMGA). Beef carcass trading standards. Tokyo, Japan: JMGA; 1988
  23. Ministry of Agriculture, Forestory and Fisheries (MAFF) [Internet], Statistics VIII. Livestock and poultry: number of farm households feeding livestock and number of livestock fed etc, MAFF [cited 2018 Apr]. Available from:
  24. Pencharz BP. Protein and animo acids. In'Present knowledge in nutrition'. 10th ed. In: Erdman Jr JW, Macdonald IA, Zeisel SH, editors. Singapore: International Life Sciences Institute; John Wiley & Sons; 2012. pp. 69-82.
  25. Mirae O, Kim EK, Jeon, BT, Yujiao T. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut. Meat Sci 2016;119:16-21.
  26. Sturdivant CA, Lunt DK, Smith GC, Smith SB. Fatty acid composition of subcutaneous and intramuscular adipose tissues and M. longissimus dorsi of Wagyu cattle. Meat Sci 1992;32:449-58.
  27. Gotoh T, Olavanh S, Shiota M, et al. Relationship between myofiber type and fatty acid composition in skeletal muscles of Wagyu (Japanese Black) and Holstein cattle. In: Proceeding of 57th International Congress of Meat Science and Technology 2011; 2011 August 8-12: Ghent, Belgium.
  28. Klont RE, Brocks L, Eikelenboom G. Muscle fiber type and meat quality. Meat Sci 1998;49:S219-29.
  29. Iwamoto H, Ono Y, Goto T, et al. Comparative studies on the composition of muscle fiber types in Japanese Black, Japanese Brown and Holstein steers. Anim Sci Technol 1991;62:674-82 (in Japanese).
  30. Gotoh T, Histochemical properties of skeletal muscles in Japanese cattle and their meat production ability, review. Anim Sci J 2003;74:339-54.
  31. Morita S, Iwamoto H, Fukumitsu Y, et al. Heterogeneous composition of histochemical fibre types in the different parts of m. longissimus thoracis from Mishima (Japanese native) steers. Meat Sci 1999;54:59-63.
  32. Solomon MB. Profile of fiber types in muscles from wild pigs native to the United States. Meat Sci 1985;13:247-54.
  33. Rahelic S, Puac S. Fibre types in longissimus dorsi from wild and highly selected pig breeds. Meat Sci 1981;5:439-50.
  34. Zembayashi M. Effects of nutritional planes and breeds on intramuscular-lipid deposition in M. longissimus dorsi of steers. Meat Sci 1994;38:367-74.
  35. Nishimura T. The role of intramuscular connective tissue in meat texture. Anim Sci J 2010;81:21-7.
  36. Yang A, Larsen TW, Powell H, Tume K. A comparison of fat composition of Japanese and long-termgrain-fed Australian steers. Meat Sci 1999;51:1-9.
  37. Melton L, Amiri M, Davis W, Backus R. Flavor and chemical characteristics of ground beef from grass-, forage-grain- and grain-finished steers. J Anim Sci 1982;55:77-87.
  38. Rudel L, Park S, Sawyer K. Compared with dietary monounsaturated and saturated fat, polyunsaturated fat protects African green monkeys from coronary artery athero-sclerosis. Arterioscler Thromb Vasc Biol 1995;15:2101-10.
  39. Smith S. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J 1994;8:1248-59.
  40. Jenkins C. Lipid metabolism in the rumen. J Dairy Sci 1993;76:3851-63.
  41. Edwards R, Tove S, Blumer T, Barrick E. Effects of added dietary fat on fatty acid composition and carcass characteristics of fatting steers. J Anim Sci 1961;20:712-7.
  42. Cabezas M, Hentges J, Moore J, Olson J. Effect of diet on fatty acid composition of body fat in steers. J Anim Sci 1965;24:57-61.
  43. Oka A, Iwaki F, Dohgo T, et al. Genetic effects on fatty acid composition of carcass fat of Japanese Black Wagyu steers. J Anim Sci 2002;80:1005-11.
  44. Taniguchi M, Utsugi T, Oyama K, et al. Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mamm Genome 2004;15:142-8.
  45. Kim YC, Ntambi JM. Regulation of stearoyl-CoA desaturase genes: Role in cellular metabolism and preadipocyte differentiation. Biochem Biophys Res Commun 1999;266:1-4.
  46. Yang A, Larsen TW, Smith SB, Tume RK. ${\Delta}9$ desaturase activity in bovine subcutaneous fatty acid composition. Lipids 1999;34:971-8.
  47. Ohsaki H, Tanaka A, Hoashi S, et al. Effect of SCD and SREBP genotypes on fatty acid composition in adipose tissue of Japanese Black cattle herds. Anim Sci J 2009;80:225-32.
  48. Ishii A, Yamaji K, Uemoto Y, et al. Genome Wide association study for fatty acid composition in Japanese Black cattle. Anim Sci J 2013;84:675-82.
  49. Kelly MJ, Tume RK, Fortes M, Thompson JM. Whole-genome association study of fatty acid composition in a diverse range of beef cattle breeds. J Anim Sci 2014;92:1895-901.
  50. Shimano H. Sterol regulatory element-binding proteins (SREBPs), transcriptional regulators of lipid synthetic genes. Prog Lipid Res 2001;40:439-52.
  51. Hoashi S, Ashida N, Ohsaki H, et al. Genotype of bovine sterol regulatory element binding protein-1 (SREBP-1) is associated with fatty acid composition in Japanese Black cattle. Mamm Genome 2007;18:880-6.
  52. Abe T, Saburi J, Hasebe H, et al. Novel mutations of the FASN gene and their effect on fatty acid composition in Japanese Black beef. Biochem Genet 2009;47:397-411.
  53. Hoashi S, Hinenoya T, Tanaka A, et al. Association between fatty acid compositions and genotypes of FABP4 and $LXR{\alpha}$ in Japanese Black cattle. BMC Genet 2008;9:84.
  54. Matsumoto H, Sasaki K, Bessho T, et al. The SNPs in the ACACA gene are effective on fatty acid composition in holstein milk. Mol Biol Rep 2012;39:8637-44.
  55. Matsumoto H, Shimizu Y, Tanaka A, et al. The SNP in the promoter region of the bovine ELOVL5 gene influences economic traits including subcutaneous fat thickness. Mol Biol Rep 2013;40:3231-7.
  56. Matsumoto H, Nogi T, Tabuchi I, et al. The SNPs in the promoter regions of the bovine FADS2 and FABP4 genes are associated with beef quality traits. Livest Sci 2014;163:34-40.
  57. Sasazaki S, Akiyama K, Narukami T, et al. UTS2R gene polymorphisms are associated with fatty acid composition in Japanese beef cattle. Anim Sci J 2014;85:499-505.
  58. Inoue K, Kawamura T, Inuduka A, et al. Intensive fattening by shorttening period in japanese black steers. Bull Beef Cattle Sci 2000;68:48-54.
  59. Zembayashi M, Inayama M. Fat partition and its distritbution in Japanese Black, Japanese Shorthorn and Holstein steer carcass. Jpn J Zootech Sci 1987;58:381-7.
  60. Bocquier F, Gonzalez-Garcia E. Sustainability of ruminant agriculturein the new context: feeding strategies and features of animal adaptability into the necessary holistic approach. Animal 2010;4:1258-73.
  61. Barker DJP, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis, Int J Epidemiol 2002;31:1235-9.
  62. Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science 2004;305:1733-6.
  63. Haugaard CT, Bauer MK. Rodent models of intarauterine growth restriction. Scand J Lab Anim Sci 2001;28:10-22.
  64. Waterland RA, Garza C. Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 1999;69:179-97.
  65. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004;20:63-8.
  66. Weaver ICG, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004;7:847-54.
  67. Aalinkeel R, Srinivasan M, Song F, Patel MS. Programming into adulthood of islet adaptatins induced by early nutritional intervention in the rat. Am J Physiol Endocrinol Metab 2001;281:E640-8.
  68. Srinivasan M, Laychock SG, Hill DJ, Patel MS. Neonatal nutrition: metabolic programming of pancreatic islets and obesity. Exp Biol Med 2003;228:15-23.
  69. Waterland RA, Kellermayer R, Rached M-T, et al. Epigenomic profiling indicates a role for DNA methylation in early postnatal live development. Hum Mol Genet 2009;18:3026-38.
  70. Waterland RA. Nutritional epigenetics. In: Erdman Jr JW, Macdonald IA, Zeisel SH, editors. Present knowledge in nutrition, 10th ed. Singapore: International Life Sciences Institute; John Wiley & Sons; 2012. p. 14-26.
  71. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33(Suppl.):245-54.
  72. Canani RB, Di Costanzo M, Leone L, et al. Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev 2011;24:198-205.
  73. Funston RN, Summers AF. Epigenetics: Setting up lifetime production of beef cows by managing nutrition. Annu Rev Anim Biosci 2013;1:339-63.
  74. Mathers JC, McKay JA. Epigenetics-potential contribution to fetal programming. Adv Exp Med Biol 2009;646:119-23.
  75. Scheffler JM, McCann MA, Greiner SP, et al. Early metabolic imprinting events increase marbling scores in fed cattle. J Anim Sci 2014;92:320-4.
  76. Gotoh T, Fumita T, Etoh T, et al. Influence of metabolic imprinting on meat quality: impact of feed quality during early growth period on intramuscular adipogenesis in Holstein steers. In: Proceeding of XIIth AAAP animal science congress 2006; 2006 September 17-23: Busan, Korea: Korean Society of Animal Science & Technology, Federation of Korean Societies of Animal Sciences; 2006. pp. 50.
  77. Gotoh T, Etoh K, Saitoh K, et al. Metabolic imprinting effect in beef production: influence of nutrition manipulation during an early growth stage on carcass characteristics and intramuscular fat content of longissimus muscle in Wagyu (Japanese Black). In: Matteo Crovetto G, editor. Proceeding of the 3rd EAAP (European Federation of Animal Science) International Symposium on Energy and Protein Metabolism and Nutrition 2010; 2010 September 6-10: Parma, Italy. Waneningen, The Netherlands: Waneningen Academic Publishers; 2010. pp. 669-70.
  78. Sithyphone K, Yabe M, Horita H, et al. Comparison of feeding systems: feed cost, palatability and environmental impact among hay-fattened beef, consistent grass-only-fed beef and conventional marbled beef in Wagyu (Japanese Black cattle). Anim Sci J 2011;82:352-9.
  79. Gotoh, T. Potential of the application of epigenetics in animal production. Anim Prod Sci 2015;55:145-58.
  80. Sithyphone K, Fujimura R, Etoh K, et al. Metabolic imprinting effect in beef production: influence of nutrition manipulation during an early growth stage on PPARg2 and PMRT5 expressions in the longissimus muscle in Wagyu (Japanese Black). In: Proceedings of the 8th developmental origins of health and disease (DOHaD) 2013; 2013 November 16-21: Singapore. Singapore: Cambridge University Press; 2013. pp. 566.
  81. Gotoh T. Challenges of application of ICT in cattle management: remote management system for cattle grazing in mountainous areas of Japan using a smartphone, smart sensors and systems. In: Kyung CM, Yasuura H, Liu Y, Lin YL, editors. Innovations for medical, environmental, and IoT application. Switzerland: Springer International Publishing; 2016. p. 467-84.