DOI QR코드

DOI QR Code

Researches on Dark Matter Using e+ e- Collider

  • Yeo, Insung ;
  • Cho, Kihyeon
  • Received : 2018.05.06
  • Accepted : 2018.05.31
  • Published : 2018.06.15

Abstract

Higgs boson enables the Standard Model (SM) to be established. However, we do not know much about dark matter which occupies approximately six times of the SM particles in universe besides having mass. The interactions of dark matter is much weaker than that of the SM. Further, its mass range is very wide, from the order of eV to PeV. Therefore, many experiments have contributed to search for dark matter by indirect, direct and accelerator research. This paper reviews researches on dark matter using accelerator, especially the $e^+e^-$ collider, from the viewpoint of experimental high energy physicists.

Keywords

dark matter;$e^+e^-$ collider;particle physics;astronomical physics

References

  1. Alexander J, Battaglieri M, Echenard B, Essig R, Graham M, et al., Dark sectors 2016 workshop: community report, eprint arXiv:1608.08632 (2016).
  2. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with ATLAS detector at the LHC, Phys. Lett. B 716, 1-29 (2012). https://doi.org/10.1016/j.physletb.2012.08.020 https://doi.org/10.1016/j.physletb.2012.08.020
  3. BABAR Collaboration, Search for invisible decays of a light scalar in radiative transitions ${\nu}3S{\rightarrow}{\gamma}A0$, eprint arXiv: 0808.0017 (2008).
  4. BABAR Collaboration, Search for production of invisible final states in single-photon decays of ${\gamma}(1S)$, Phys.Rev. Lett. 107, 021804 (2011). https://doi.org/10.1103/PhysRevLett.107.021804 https://doi.org/10.1103/PhysRevLett.107.021804
  5. BABAR Collaboration, Search for low-mass dark-sector Higgs bosons, Phys. Rev. Lett. 108, 211801 (2012). https://doi.org/10.1103/PhysRevLett.108.211801 https://doi.org/10.1103/PhysRevLett.108.211801
  6. BABAR Collaboration, Search for di-muon decays of a low-mass Higgs boson in radiative decays of the ${\gamma}(1S)$, Phys. Rev. D 87, 059903 (2013). https://doi.org/10.1103/PhysRevD.87.059903 https://doi.org/10.1103/PhysRevD.87.059903
  7. BABAR Collaboration, Search for a dark photon in $e^+e^-$ collisions at BABAR, eprint arXiv:1406.2980 (2014). https://doi.org/10.1103/PhysRevLett.113.201801
  8. BABAR Collaboration, Search for a muonic dark force at BABAR, Phys. Rev. D 94, 011102 (2016). https://doi.org/10.1103/PhysRevD.94.011102 https://doi.org/10.1103/PhysRevD.94.011102
  9. Batell B, Pospelov B, Ritz A, Probing a secluded U(1) at Bfactories, Phys. Rev. D. 79, 115008 (2009). https://doi.org/10.1103/PhysRevD.79.115008 https://doi.org/10.1103/PhysRevD.79.115008
  10. Belle Collaboration, Search for the dark photon and the dark Higgs boson at Belle, Phys. Rev. Lett. 114, 211801 (2015). https://doi.org/10.1103/PhysRevLett.114.211801 https://doi.org/10.1103/PhysRevLett.114.211801
  11. Belle Collaboration, Search for a dark vector gauge boson decaying to ${\pi}^+{\pi}^-$ using ${\eta}{\rightarrow} {\pi}^+{\pi}^-{\gamma}$ decays, Phys. Rev. D 94, 092006 (2016). https://doi.org/10.1103/PhysRevD.94.092006 https://doi.org/10.1103/PhysRevD.94.092006
  12. BESIII Collaboration, Dark photon search in the mass range between 1.5 and $3.4GeV/c^2$, Phy. Lett. B 774, 252-257 (2017). https://doi.org/10.1016/j.physletb.2017.09.067 https://doi.org/10.1016/j.physletb.2017.09.067
  13. Cho K, e-Science paradigm for astroparticle physics at KISTI, J. Astron. Space Sci. 33, 63-67 (2016a). https://doi.org/10.5140/JASS.2016.33.1.63 https://doi.org/10.5140/JASS.2016.33.1.63
  14. Cho K, Computational science and the search for dark matter, New Phys. Sae Mulli 66, 950-956 (2016b). https://doi.org/10.3938/NPSM.66.950 https://doi.org/10.3938/NPSM.66.950
  15. Cho K, Computational science-based research on dark matter at KISTI, J. Astron. Space Sci. 34, 153-159 (2017). https://doi.org/10.5140/JASS.2017.34.2.153 https://doi.org/10.5140/JASS.2017.34.2.153
  16. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30-61 (2012). https://doi.org/10.1016/j.physletb.2012.08.021 https://doi.org/10.1016/j.physletb.2012.08.021
  17. Essig R, Mardon J, Papucci M, Volansky T, Zhong YM, Constraining light dark matter with low-energy $e^+e^-$colliders, J. High Eneregy Phys. 11, 167 (2013). https://doi.org/10.1007/JHEP11(2013)167 https://doi.org/10.1007/JHEP11(2013)167
  18. Kacurova G, Numerical modelling of convection-diffusionreaction problems with free boundary in 1D, eprint arXiv:0909.0363 (2009).
  19. KLOE-2 Collaboration, Search for dark Higgsstrahlung in $e^+e^-{\rightarrow}{\mu}^+{\mu}^-$ and missing energy events with the KLOE experiment, Phy. Lett. B 747, 365-372 (2015). https://doi.org/10.1016/j.physletb.2015.06.015 https://doi.org/10.1016/j.physletb.2015.06.015
  20. KLOE-2 Collaboration, Dark forces searches at KLOE-2, Acta Phys. Polon. B47, 461-470 (2016a). https://doi.org/10.5506/APhysPolB.47.461
  21. KLOE-2 Collaboration, Limit on the production of a new vector boson in $e^+e^-{\rightarrow}U{\gamma},\;U{\rightarrow}{\pi}^+{\pi}^-$ with the KLOE experiment, Phy. Lett. B 757, 356-361 (2016b). https://doi.org/10.1016/j.physletb.2016.04.019 https://doi.org/10.1016/j.physletb.2016.04.019
  22. Mimasu K, Sanz V, ALPs at colliders, eprint arXiv:1409.4792 (2014).
  23. Shuve B and Yavin I, Dark matter progenitor: Light vector boson decay into sterile neutrinos, Phys. Rev. D 89, 113004 (2014). https://doi.org/10.1103/PhysRevD.89.113004 https://doi.org/10.1103/PhysRevD.89.113004

Acknowledgement

Supported by : National Research Council of Science and Technology (NST)