DOI QR코드

DOI QR Code

Visible Light Induced Photocatalytic Activity of N-doped TiO2

질소 도핑된 이산화티타늄의 가시광 광촉매 활성 연구

  • Lee, Seo Hee (Department of Environmental Engineering, Kongju National University) ;
  • Lee, Chang-Yong (Department of Environmental Engineering, Kongju National University)
  • 이서희 (공주대학교 환경공학과) ;
  • 이창용 (공주대학교 환경공학과)
  • Received : 2017.12.21
  • Accepted : 2018.02.22
  • Published : 2018.06.10

Abstract

Photocatalytic properties of nitrogen doped titanium dioxide were investigated. Photocatalytic degradation of methylene blue under UV and visible light was carried out to characterize N-doped $TiO_2$. The result of XPS indicated that nitrogen atoms substitute for oxygen sites within the crystal structure of $TiO_2$. In the UV-Vis DRS spectra, N-doped amorphous $TiO_2$ absorbed UV light with little absorption of visible light, while the absorption of visible light of amorphous/anatase $TiO_2$ remarkably increased. Methylene blue photocatalytic degradation appeared by the irradiation of UV or visible light onto the N-doped anatase phase of $TiO_2$. However, the degradation rate of visible light was lower than that of UV light. The photocatalytic degradation rate of the amorphous/anatase $TiO_2$ sample was higher than that of the anatase $TiO_2$. These results indicate that the high surface area of amorphous/anatase $TiO_2$ sample, which was about three times larger than those of the anatase $TiO_2$ sample, may be related to small particles of N-doped anatase $TiO_2$.

Acknowledgement

Supported by : 공주대학교

References

  1. M. K. Jung, A Study on the Synthesis of Metal Ion-doped $TiO_2$ Photocatalyst by Sol-Gel Method and Photocatalytic Degradation, MS Thesis, Sogang University (2009).
  2. Y. G. Gang, Preparation of M-N-$TiO_2$ Photocatalysts and Their Photoactivity under Visible Light, MS Thesis, Myongji University (2010).
  3. S. M. Kim, T. K. Yun, and D. I. Hong, Effect of rutile structure on $TiO_2$ photocatalytic activity, J. Korean Chem. Soc., 49, 567-574 (2009).
  4. K. S. Jeong, A Study on the decomposition of water soluble dyes by UV/$TiO_2$, J. Environ. Sci., 12, 319-324 (2003).
  5. R. Thiruvenkatachari, S. Vigneswaran, and I. S. Moon, A review on UV/$TiO_2$ photocatalytic oxidation process, Korean J. Chem. Eng., 25, 64-72 (2008). https://doi.org/10.1007/s11814-008-0011-8
  6. D. Jung, Low temperature preparation and photocatalytic activity of $TiO_2$-xNx, J. Korean Chem. Soc., 54, 120-124 (2010). https://doi.org/10.5012/jkcs.2010.54.01.120
  7. H. H. Pham and L. W. Wang, Oxygen vacancy and hole con- duction in amorphous $TiO_2$, Phys. Chem. Chem. Phys., 17, 541-550 (2015). https://doi.org/10.1039/C4CP04209C
  8. M. C. Kimling, D. Chen, and R. A. Caruso, Temperature-induced modulation of mesopore size in hierarchically porous amorphous $TiO_2$/$ZrO_2$ beads for improved dye adsorption capacity, J. Mater. Chem. A, 3, 3768-3776 (2015). https://doi.org/10.1039/C4TA06289B
  9. M. Shalom, S. Dor, S. Rühle, L. Grinis, and A. Zaban, Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous $TiO_2$ coating, J. Phys. Chem. C, 113, 3895-3898 (2009).
  10. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, and S. Yanagida, Hydrothermal synthesis of nanosized anatase and rutile $TiO_2$ using amorphous phase $TiO_2$, J. Mater. Chem., 11, 1694-1703 (2001). https://doi.org/10.1039/b008974p
  11. S. Kumar, A. G. Fedorov, and J. L. Gole, Photodegradation of ethylene using visible light responsive surfaces prepared from titania nanoparticle slurries, Appl. Catal. B, 57, 93-107 (2005). https://doi.org/10.1016/j.apcatb.2004.10.012
  12. Y. Shen, T. Xiong, H. Du, H. Jin, J. Shang, and K. Yang, Phosphorous, nitrogen, and molybdenum ternary co-doped $TiO_2$: preparation and photocatalytic activities under visible light, J. Sol-Gel Sci Technol., 50, 98-102 (2009). https://doi.org/10.1007/s10971-009-1903-8
  13. X. Chen and C. Burda, The electronic origin of the visible-light absorption properties of C-, N- and S-doped $TiO_2$ nanomaterials, J. Am. Chem. Soc., 130, 5018-5019 (2008). https://doi.org/10.1021/ja711023z
  14. Y. Kim, B. C. Bai, and Y. S. Lee, Synthesis and photodecomposition of N-doped $TiO_2$ surface treated by ammonia, Appl. Chem. Eng., 23, 308-312 (2012).
  15. K. Elghniji, M. Ksibi, and E. Elaloui, Sol-gel reverse micelle preparation and characterization of N-doped $TiO_2$: Efficient photocatalytic degradation of methylene blue in water under visible light, J. Ind. Eng. Chem., 18, 178-182 (2012). https://doi.org/10.1016/j.jiec.2011.11.011
  16. P. D. Cozzoli, A. Kornowski, and H. Weller, Low-temperature synthesis of soluble and processable organic-capped anatase $TiO_2$ nanorods, J. Am. Chem. Soc., 125, 14539-14548 (2003). https://doi.org/10.1021/ja036505h
  17. A. E. H. Machado, K. A. Borges, T. A. Silva, L. M. Santos, M. F. Borges, W. A. Machado, B. P. Caixeta, S. M. Oliveira, A. G. Trovo, and A. O. T. Patrocínio, Applications of mesoporous or- dered semiconductor materials - Case study of $TiO_2$, In: S. R. Bello (ed.). Solar Radiation Applications, 87-90, InTech, London, UK (2015).
  18. C. D. Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M. C. Paganini, and E. Giamello, N-doped $TiO_2$: Theory and experiment, Chem. Phys., 339, 44-56 (2007). https://doi.org/10.1016/j.chemphys.2007.07.020
  19. S. Sakthivel, M. Janczarek, and H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped $TiO_2$, J. Phys. Chem. B, 108, 19384-19387 (2004). https://doi.org/10.1021/jp046857q