DOI QR코드

DOI QR Code

Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways

  • Wu, Xuelun (Department of Endocrinology, The Third Hospital of Hebei Medical University) ;
  • Li, Shilun (Key Orthopaedic Biomechanics Laboratory of Hebei Province) ;
  • Xue, Peng (Department of Endocrinology, The Third Hospital of Hebei Medical University) ;
  • Li, Yukun (Department of Endocrinology, The Third Hospital of Hebei Medical University)
  • Received : 2017.12.02
  • Accepted : 2017.12.29
  • Published : 2018.03.31

Abstract

In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of $GSK3{\beta}$, increased ${\beta}-catenin$ phosphorylation at Ser675 site and upregulated nuclear ${\beta}-catenin$ content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, ${\beta}-catenin$ abrogated the liraglutide-induced activation of cAMP, AKT, ${\beta}-catenin$, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through $cAMP/PKA/{\beta}-catenin$ and $PI3K/Akt/GSK3{\beta}$ signaling pathways.

Acknowledgement

Supported by : Natural Science foundation of Hebei Province, Hebei College Natural Science

References

  1. Bullock, B.P., Heller, R.S., and Habener, J.F. (1996). Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137, 2968-2978. https://doi.org/10.1210/endo.137.7.8770921
  2. Challa, T.D., Beaton, N., Arnold, M., Rudofsky, G., Langhans, W., and Wolfrum, C. (2012). Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J. Biol. Chem. 287, 6421-6430. https://doi.org/10.1074/jbc.M111.310342
  3. Chen, X., Song, I.H., Dennis, J.E., and Greenfield, E.M. (2007). Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts. J. Bone Miner. Res. 22, 656-664. https://doi.org/10.1359/jbmr.070122
  4. Cho, Y.M., Fujita, Y., and Kieffer, T.J. (2014). Glucagon-like peptide-1: glucose homeostasis and beyond. Annu. Rev. Physiol. 76, 535-559. https://doi.org/10.1146/annurev-physiol-021113-170315
  5. Clevers, H., and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205. https://doi.org/10.1016/j.cell.2012.05.012
  6. Creutzfeldt, W. (1979). The incretin concept today. Diabetologia 16, 75-85. https://doi.org/10.1007/BF01225454
  7. Cunha, D.A., Ladriere, L., Ortis, F., Igoillo-Esteve, M., Gurzov, E.N., Lupi, R., Marchetti, P., Eizirik, D.L., and Cnop, M. (2009). Glucagonlike peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58, 2851-2862. https://doi.org/10.2337/db09-0685
  8. Deacon, C.F. (2004). Circulation and degradation of GIP and GLP-1. Hormone Metabol. Res. 36, 761-765. https://doi.org/10.1055/s-2004-826160
  9. Campbell, J.E., and Drucker, D.J. (2013). Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabol. 17, 819-837. https://doi.org/10.1016/j.cmet.2013.04.008
  10. Drucker, D.J. (2003). Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161-171. https://doi.org/10.1210/me.2002-0306
  11. Ono, T. (2014). Expression of glucagon-like peptide-1 receptor and glucosedependent insulinotropic polypeptide receptor is regulated by the glucose concentration in mouse osteoblastic MC3T3-E1 cells. Int J. Mol. Med. 34, 475-482. https://doi.org/10.3892/ijmm.2014.1787
  12. Berlier, J.L., Kharroubi, I., Zhang, J., Dalla Valle, A., Rigutto, S., Mathieu, M., Gangji, V., and Rasschaert, J. (2015). Glucosedependent insulinotropic peptide prevents serum deprivationinduced apoptosis in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Stem Cell Rev. 11, 841-851. https://doi.org/10.1007/s12015-015-9616-6
  13. Bodine, P.V., and Komm, B.S. (2006). Wnt signaling and osteoblastogenesis. Rev. Endocrine Metabol. Dis. 7, 33-39.
  14. Tsukiyama, K., Yamada, Y., Yamada, C., Harada, N., Kawasaki, Y., Ogura, M., Bessho, K., Li, M., Amizuka, N., Sato, M., et al. (2006). Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol. Endocrinol. 20, 1644-1651. https://doi.org/10.1210/me.2005-0187
  15. Wu, X., Li, S., Xue, P., and Li, Y. (2017). Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving beta-catenin. Exp. Cell Res. 360, 281-291. https://doi.org/10.1016/j.yexcr.2017.09.018
  16. Yamada, C., Yamada, Y., Tsukiyama, K., Yamada, K., Udagawa, N., Takahashi, N., Tanaka, K., Drucker, D.J., Seino, Y., and Inagaki, N. (2008). The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149, 574-579. https://doi.org/10.1210/en.2007-1292
  17. Yavropoulou, M.P., and Yovos, J.G. (2013). Incretins and bone: evolving concepts in nutrient-dependent regulation of bone turnover. Hormones 12, 214-223. https://doi.org/10.14310/horm.2002.1405
  18. Ying, Y., Zhu, H., Liang, Z., Ma, X., and Li, S. (2015). GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/bcatenin pathway. J. Mol. Endocrinol. 55, 245-262. https://doi.org/10.1530/JME-15-0155
  19. Zhao, X., Liu, G., Shen, H., Gao, B., Li, X., Fu, J., Zhou, J., and Ji, Q. (2015). Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int. J. Mol. Med. 35, 684-692. https://doi.org/10.3892/ijmm.2014.2052
  20. Miura, M., Chen, X.D., Allen, M.R., Bi, Y., Gronthos, S., Seo, B.M., Lakhani, S., Flavell, R.A., Feng, X.H., Robey, P.G., et al. (2004). A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J. Clin. Invest. 114, 1704-1713. https://doi.org/10.1172/JCI20427
  21. Nuche-Berenguer, B., Portal-Nunez, S., Moreno, P., Gonzalez, N., Acitores, A., Lopez-Herradon, A., Esbrit, P., Valverde, I., and Villanueva-Penacarrillo, M.L. (2010). Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMPlinked GLP-1 receptor. J. Cell. Physiol. 225, 585-592. https://doi.org/10.1002/jcp.22243
  22. Pacheco-Pantoja, E.L., Ranganath, L.R., Gallagher, J.A., Wilson, P.J., and Fraser, W.D. (2011). Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 11, 12. https://doi.org/10.1186/1472-6793-11-12
  23. Pallen, M.J., Puckey, L.H., and Wren, B.W. (1992). A rapid, simple method for detecting PCR failure. PCR Methods Appl. 2, 91-92. https://doi.org/10.1101/gr.2.1.91
  24. Papazafiropoulou, A., Papanas, N., Pappas, S., and Maltezos, E. (2014). Role of endogenous GLP-1 and its agonists in osteopenia and osteoporosis: but we little know until tried. Curr. Diabet. Rev. 10, 43-47. https://doi.org/10.2174/1573399810666140217114848
  25. Pereira, M., Jeyabalan, J., Jorgensen, C.S., Hopkinson, M., Al-Jazzar, A., Roux, J.P., Chavassieux, P., Orriss, I.R., Cleasby, M.E., and Chenu, C. (2015). Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 81, 459-467. https://doi.org/10.1016/j.bone.2015.08.006
  26. Sanz, C., Vazquez, P., Blazquez, C., Barrio, P.A., Alvarez Mdel, M., and Blazquez, E. (2010). Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am. J. Physiol. Endocrinol. Metabol. 298, E634-643. https://doi.org/10.1152/ajpendo.00460.2009
  27. Liang, Q.H., Liu, Y., Wu, S.S., Cui, R.R., Yuan, L.Q., and Liao, E.Y. (2013). Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway. Toxicol. Appl. Pharmacol. 272, 591-597. https://doi.org/10.1016/j.taap.2013.07.018
  28. Liu, Z., and Habener, J.F. (2008). Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J. Biol. Chem. 283, 8723-8735. https://doi.org/10.1074/jbc.M706105200
  29. Liu, X., Bruxvoort, K.J., Zylstra, C.R., Liu, J., Cichowski, R., Faugere, M.C., Bouxsein, M.L., Wan, C., Williams, B.O., and Clemens, T.L. (2007). Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc. Natl. Acad. Sci. USA 104, 2259-2264. https://doi.org/10.1073/pnas.0604153104
  30. Lu, N., Sun, H., Yu, J., Wang, X., Liu, D., Zhao, L., Sun, L., Zhao, H., Tao, B., and Liu, J. (2015). Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PloS one 10, e0132744. https://doi.org/10.1371/journal.pone.0132744
  31. Luo, G., Liu, H., and Lu, H. (2016). Glucagon-like peptide-1(GLP-1) receptor agonists: potential to reduce fracture risk in diabetic patients? Br J. Clin. Pharmacol. 81, 78-88. https://doi.org/10.1111/bcp.12777
  32. Madsbad, S., Schmitz, O., Ranstam, J., Jakobsen, G., Matthews, D.R., and Group, N.N.I.S. (2004). Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 27, 1335-1342. https://doi.org/10.2337/diacare.27.6.1335
  33. Kim, W., and Egan, J.M. (2008). The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev. 60, 470-512. https://doi.org/10.1124/pr.108.000604
  34. Kimura, R., Okouchi, M., Fujioka, H., Ichiyanagi, A., Ryuge, F., Mizuno, T., Imaeda, K., Okayama, N., Kamiya, Y., Asai, K., et al. (2009). Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience 162, 1212-1219. https://doi.org/10.1016/j.neuroscience.2009.05.025
  35. Gilbert, M.P., and Pratley, R.E. (2015). The impact of diabetes and diabetes medications on bone health. Endocrine Rev. 36, 194-213. https://doi.org/10.1210/er.2012-1042
  36. Henriksen, D.B., Alexandersen, P., Hartmann, B., Adrian, C.L., Byrjalsen, I., Bone, H.G., Holst, J.J., and Christiansen, C. (2007). Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone 40, 723-729. https://doi.org/10.1016/j.bone.2006.09.025
  37. Hock, J.M., Krishnan, V., Onyia, J.E., Bidwell, J.P., Milas, J., and Stanislaus, D. (2001). Osteoblast apoptosis and bone turnover. J. Bone Miner. Res. 16, 975-984. https://doi.org/10.1359/jbmr.2001.16.6.975
  38. Jeon, Y.K., Bae, M.J., Kim, J.I., Kim, J.H., Choi, S.J., Kwon, S.K., An, J.H., Kim, S.S., Kim, B.H., Kim, Y.K., et al. (2014). Expression of glucagon-like peptide 1 receptor during osteogenic differentiation of adipose-derived stem cells. Endocrinol. Metabol. 29, 567-573. https://doi.org/10.3803/EnM.2014.29.4.567
  39. Jilka, R.L., Weinstein, R.S., Parfitt, A.M., and Manolagas, S.C. (2007). Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J. Bone Miner. Res. 22, 1492-1501. https://doi.org/10.1359/jbmr.070518
  40. Juhl, C.B., Hollingdal, M., Sturis, J., Jakobsen, G., Agerso, H., Veldhuis, J., Porksen, N., and Schmitz, O. (2002). Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes. Diabetes 51, 424-429. https://doi.org/10.2337/diabetes.51.2.424
  41. Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  42. Feng, Y., Su, L., Zhong, X., Guohong, W., Xiao, H., Li, Y., and Xiu, L. (2016). Exendin-4 promotes proliferation and differentiation of MC3T3-E1 osteoblasts by MAPKs activation. J. Mol. Endocrinol. 56, 189-199. https://doi.org/10.1530/JME-15-0264
  43. Ferguson, S.S. (2001). Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1-24.