Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways

  • Wu, Xuelun (Department of Endocrinology, The Third Hospital of Hebei Medical University) ;
  • Li, Shilun (Key Orthopaedic Biomechanics Laboratory of Hebei Province) ;
  • Xue, Peng (Department of Endocrinology, The Third Hospital of Hebei Medical University) ;
  • Li, Yukun (Department of Endocrinology, The Third Hospital of Hebei Medical University)
  • Received : 2017.12.02
  • Accepted : 2017.12.29
  • Published : 2018.03.31


In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of $GSK3{\beta}$, increased ${\beta}-catenin$ phosphorylation at Ser675 site and upregulated nuclear ${\beta}-catenin$ content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, ${\beta}-catenin$ abrogated the liraglutide-induced activation of cAMP, AKT, ${\beta}-catenin$, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through $cAMP/PKA/{\beta}-catenin$ and $PI3K/Akt/GSK3{\beta}$ signaling pathways.


Supported by : Natural Science foundation of Hebei Province, Hebei College Natural Science


  1. Bullock, B.P., Heller, R.S., and Habener, J.F. (1996). Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137, 2968-2978.
  2. Challa, T.D., Beaton, N., Arnold, M., Rudofsky, G., Langhans, W., and Wolfrum, C. (2012). Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J. Biol. Chem. 287, 6421-6430.
  3. Chen, X., Song, I.H., Dennis, J.E., and Greenfield, E.M. (2007). Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts. J. Bone Miner. Res. 22, 656-664.
  4. Cho, Y.M., Fujita, Y., and Kieffer, T.J. (2014). Glucagon-like peptide-1: glucose homeostasis and beyond. Annu. Rev. Physiol. 76, 535-559.
  5. Clevers, H., and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205.
  6. Creutzfeldt, W. (1979). The incretin concept today. Diabetologia 16, 75-85.
  7. Cunha, D.A., Ladriere, L., Ortis, F., Igoillo-Esteve, M., Gurzov, E.N., Lupi, R., Marchetti, P., Eizirik, D.L., and Cnop, M. (2009). Glucagonlike peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58, 2851-2862.
  8. Deacon, C.F. (2004). Circulation and degradation of GIP and GLP-1. Hormone Metabol. Res. 36, 761-765.
  9. Campbell, J.E., and Drucker, D.J. (2013). Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabol. 17, 819-837.
  10. Drucker, D.J. (2003). Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161-171.
  11. Ono, T. (2014). Expression of glucagon-like peptide-1 receptor and glucosedependent insulinotropic polypeptide receptor is regulated by the glucose concentration in mouse osteoblastic MC3T3-E1 cells. Int J. Mol. Med. 34, 475-482.
  12. Berlier, J.L., Kharroubi, I., Zhang, J., Dalla Valle, A., Rigutto, S., Mathieu, M., Gangji, V., and Rasschaert, J. (2015). Glucosedependent insulinotropic peptide prevents serum deprivationinduced apoptosis in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Stem Cell Rev. 11, 841-851.
  13. Bodine, P.V., and Komm, B.S. (2006). Wnt signaling and osteoblastogenesis. Rev. Endocrine Metabol. Dis. 7, 33-39.
  14. Tsukiyama, K., Yamada, Y., Yamada, C., Harada, N., Kawasaki, Y., Ogura, M., Bessho, K., Li, M., Amizuka, N., Sato, M., et al. (2006). Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol. Endocrinol. 20, 1644-1651.
  15. Wu, X., Li, S., Xue, P., and Li, Y. (2017). Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving beta-catenin. Exp. Cell Res. 360, 281-291.
  16. Yamada, C., Yamada, Y., Tsukiyama, K., Yamada, K., Udagawa, N., Takahashi, N., Tanaka, K., Drucker, D.J., Seino, Y., and Inagaki, N. (2008). The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149, 574-579.
  17. Yavropoulou, M.P., and Yovos, J.G. (2013). Incretins and bone: evolving concepts in nutrient-dependent regulation of bone turnover. Hormones 12, 214-223.
  18. Ying, Y., Zhu, H., Liang, Z., Ma, X., and Li, S. (2015). GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/bcatenin pathway. J. Mol. Endocrinol. 55, 245-262.
  19. Zhao, X., Liu, G., Shen, H., Gao, B., Li, X., Fu, J., Zhou, J., and Ji, Q. (2015). Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int. J. Mol. Med. 35, 684-692.
  20. Miura, M., Chen, X.D., Allen, M.R., Bi, Y., Gronthos, S., Seo, B.M., Lakhani, S., Flavell, R.A., Feng, X.H., Robey, P.G., et al. (2004). A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J. Clin. Invest. 114, 1704-1713.
  21. Nuche-Berenguer, B., Portal-Nunez, S., Moreno, P., Gonzalez, N., Acitores, A., Lopez-Herradon, A., Esbrit, P., Valverde, I., and Villanueva-Penacarrillo, M.L. (2010). Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMPlinked GLP-1 receptor. J. Cell. Physiol. 225, 585-592.
  22. Pacheco-Pantoja, E.L., Ranganath, L.R., Gallagher, J.A., Wilson, P.J., and Fraser, W.D. (2011). Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 11, 12.
  23. Pallen, M.J., Puckey, L.H., and Wren, B.W. (1992). A rapid, simple method for detecting PCR failure. PCR Methods Appl. 2, 91-92.
  24. Papazafiropoulou, A., Papanas, N., Pappas, S., and Maltezos, E. (2014). Role of endogenous GLP-1 and its agonists in osteopenia and osteoporosis: but we little know until tried. Curr. Diabet. Rev. 10, 43-47.
  25. Pereira, M., Jeyabalan, J., Jorgensen, C.S., Hopkinson, M., Al-Jazzar, A., Roux, J.P., Chavassieux, P., Orriss, I.R., Cleasby, M.E., and Chenu, C. (2015). Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 81, 459-467.
  26. Sanz, C., Vazquez, P., Blazquez, C., Barrio, P.A., Alvarez Mdel, M., and Blazquez, E. (2010). Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am. J. Physiol. Endocrinol. Metabol. 298, E634-643.
  27. Liang, Q.H., Liu, Y., Wu, S.S., Cui, R.R., Yuan, L.Q., and Liao, E.Y. (2013). Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway. Toxicol. Appl. Pharmacol. 272, 591-597.
  28. Liu, Z., and Habener, J.F. (2008). Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J. Biol. Chem. 283, 8723-8735.
  29. Liu, X., Bruxvoort, K.J., Zylstra, C.R., Liu, J., Cichowski, R., Faugere, M.C., Bouxsein, M.L., Wan, C., Williams, B.O., and Clemens, T.L. (2007). Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc. Natl. Acad. Sci. USA 104, 2259-2264.
  30. Lu, N., Sun, H., Yu, J., Wang, X., Liu, D., Zhao, L., Sun, L., Zhao, H., Tao, B., and Liu, J. (2015). Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PloS one 10, e0132744.
  31. Luo, G., Liu, H., and Lu, H. (2016). Glucagon-like peptide-1(GLP-1) receptor agonists: potential to reduce fracture risk in diabetic patients? Br J. Clin. Pharmacol. 81, 78-88.
  32. Madsbad, S., Schmitz, O., Ranstam, J., Jakobsen, G., Matthews, D.R., and Group, N.N.I.S. (2004). Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 27, 1335-1342.
  33. Kim, W., and Egan, J.M. (2008). The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev. 60, 470-512.
  34. Kimura, R., Okouchi, M., Fujioka, H., Ichiyanagi, A., Ryuge, F., Mizuno, T., Imaeda, K., Okayama, N., Kamiya, Y., Asai, K., et al. (2009). Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience 162, 1212-1219.
  35. Gilbert, M.P., and Pratley, R.E. (2015). The impact of diabetes and diabetes medications on bone health. Endocrine Rev. 36, 194-213.
  36. Henriksen, D.B., Alexandersen, P., Hartmann, B., Adrian, C.L., Byrjalsen, I., Bone, H.G., Holst, J.J., and Christiansen, C. (2007). Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone 40, 723-729.
  37. Hock, J.M., Krishnan, V., Onyia, J.E., Bidwell, J.P., Milas, J., and Stanislaus, D. (2001). Osteoblast apoptosis and bone turnover. J. Bone Miner. Res. 16, 975-984.
  38. Jeon, Y.K., Bae, M.J., Kim, J.I., Kim, J.H., Choi, S.J., Kwon, S.K., An, J.H., Kim, S.S., Kim, B.H., Kim, Y.K., et al. (2014). Expression of glucagon-like peptide 1 receptor during osteogenic differentiation of adipose-derived stem cells. Endocrinol. Metabol. 29, 567-573.
  39. Jilka, R.L., Weinstein, R.S., Parfitt, A.M., and Manolagas, S.C. (2007). Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J. Bone Miner. Res. 22, 1492-1501.
  40. Juhl, C.B., Hollingdal, M., Sturis, J., Jakobsen, G., Agerso, H., Veldhuis, J., Porksen, N., and Schmitz, O. (2002). Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes. Diabetes 51, 424-429.
  41. Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257.
  42. Feng, Y., Su, L., Zhong, X., Guohong, W., Xiao, H., Li, Y., and Xiu, L. (2016). Exendin-4 promotes proliferation and differentiation of MC3T3-E1 osteoblasts by MAPKs activation. J. Mol. Endocrinol. 56, 189-199.
  43. Ferguson, S.S. (2001). Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1-24.