DOI QR코드

DOI QR Code

Increased Primary Cilia in Idiopathic Pulmonary Fibrosis

  • Lee, Junguee (Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Oh, Dong Hyun (Department of Radiology, Konyang University Hospital) ;
  • Park, Ki Cheol (Clinical Research Institute, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Choi, Ji Eun (Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kwon, Jong Beom (Department of Thoracic and Cardiovascular Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Lee, Jongho (Department of Thoracic and Cardiovascular Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Park, Kuhn (Department of Thoracic and Cardiovascular Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Sul, Hae Joung (Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2017.11.21
  • Accepted : 2017.12.05
  • Published : 2018.03.31

Abstract

Primary cilia are solitary, non-motile, axonemal microtubule-based antenna-like organelles that project from the plasma membrane of most mammalian cells and are implicated in transducing hedgehog signals during development. It was recently proposed that aberrant SHH signaling may be implicated in the progression of idiopathic pulmonary fibrosis (IPF). However, the distribution and role of primary cilia in IPF remains unclear. Here, we clearly observed the primary cilia in alveolar epithelial cells, fibroblasts, and endothelial cells of human normal lung tissue. Then, we investigated the distribution of primary cilia in human IPF tissue samples using immunofluorescence. Tissues from six IPF cases showed an increase in the number of primary cilia in alveolar cells and fibroblasts. In addition, we observed an increase in ciliogenesis related genes such as IFT20 and IFT88 in IPF. Since major components of the SHH signaling pathway are known to be localized in primary cilia, we quantified the mRNA expression of the SHH signaling components using qRT-PCR in both IPF and control lung. mRNA levels of SHH, the coreceptor SMO, and the transcription factors GLI1 and GLI2 were upregulated in IPF compared with control. Furthermore, the nuclear localization of GLI1 was observed mainly in alveolar epithelia and fibroblasts. In addition, we showed that defective KIF3A-mediated ciliary loss in human type II alveolar epithelial cell lines leads to disruption of SHH signaling. These results indicate that a significant increase in the number of primary cilia in IPF contributes to the upregulation of SHH signals.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Catholic Medical Center

References

  1. Adams, M., Smith, U.M., Logan, C.V., and Johnson, C.A. (2008). Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J. Med. Genet. 45, 257-267. https://doi.org/10.1136/jmg.2007.054999
  2. Ashizawa, N., Niigaki, M., Hamamoto, N., Niigaki, M., Kaji, T., Katsube, T., Sato, S., Endoh, H., Hidaka, K., Watanabe, M., et al. (1999). The morphological changes of exocrine pancreas in chronic pancreatitis. Histol. Histopathol. 14, 539-552.
  3. Bolanos, A.L., Milla, C.M., Lira, J.C., Ramirez, R., Checa, M., Barrera, L., Garcia-Alvarez, J., Carbajal, V., Becerril, C., Gaxiola, M., et al. (2012). Role of Sonic Hedgehog in idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L978-990. https://doi.org/10.1152/ajplung.00184.2012
  4. Cardoso, W.V., and Lu, J. (2006). Regulation of early lung morphogenesis: questions, facts and controversies. Development 133, 1611-1624. https://doi.org/10.1242/dev.02310
  5. Chang, M.Y., Parker, E., Ibrahim, S., Shortland, J.R., Nahas, M.E., Haylor, J.L., and Ong, A.C. (2006). Haploinsufficiency of Pkd2 is associated with increased tubular cell proliferation and interstitial fibrosis in two murine Pkd2 models. Nephrol. Dial. Transplant. 21, 2078-2084. https://doi.org/10.1093/ndt/gfl150
  6. Cigna, N., Farrokhi Moshai, E., Brayer, S., Marchal-Somme, J., Wemeau-Stervinou, L., Fabre, A., Mal, H., Leseche, G., Dehoux, M., Soler, P., et al. (2012). The hedgehog system machinery controls transforming growth factor-beta-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. Am. J. Pathol. 181, 2126-2137. https://doi.org/10.1016/j.ajpath.2012.08.019
  7. Corbit, K.C., Aanstad, P., Singla, V., Norman, A.R., Stainier, D.Y., and Reiter, J.F. (2005). Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018-1021. https://doi.org/10.1038/nature04117
  8. Ding, H., Zhou, D., Hao, S., Zhou, L., He, W., Nie, J., Hou, F.F., and Liu, Y. (2012). Sonic hedgehog signaling mediates epithelialmesenchymal communication and promotes renal fibrosis. J. Am. Soc. Nephrol. 23, 801-813. https://doi.org/10.1681/ASN.2011060614
  9. Eggenschwiler, J.T., and Anderson, K.V. (2007). Cilia and developmental signaling. Annu. Rev. Cell Dev. Biol. 23, 345-373. https://doi.org/10.1146/annurev.cellbio.23.090506.123249
  10. Fitch, P.M., Howie, S.E., and Wallace, W.A. (2011). Oxidative damage and TGF-beta differentially induce lung epithelial cell sonic hedgehog and tenascin-C expression: implications for the regulation of lung remodelling in idiopathic interstitial lung disease. Int. J. Exp. Pathol. 92, 8-17. https://doi.org/10.1111/j.1365-2613.2010.00743.x
  11. Hamamoto, N., Ashizawa, N., Niigaki, M., Kaji, T., Katsube, T., Endoh, H., Watanabe, M., Sumi, S., and Kinoshita, Y. (2002). Morphological changes in the rat exocrine pancreas after pancreatic duct ligation. Histol. Histopathol. 17, 1033-1041.
  12. Harari, S., and Caminati, A. (2010). IPF: new insight on pathogenesis and treatment. Allergy 65, 537-553. https://doi.org/10.1111/j.1398-9995.2009.02305.x
  13. Hassounah, N.B., Bunch, T.A., and McDermott, K.M. (2012). Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling. Clin. Cancer Res. 18, 2429-2435. https://doi.org/10.1158/1078-0432.CCR-11-0755
  14. Haycraft, C.J., Banizs, B., Aydin-Son, Y., Zhang, Q., Michaud, E.J., and Yoder, B.K. (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53. https://doi.org/10.1371/journal.pgen.0010053
  15. Hellman, N.E., Liu, Y., Merkel, E., Austin, C., Le Corre, S., Beier, D.R., Sun, Z., Sharma, N., Yoder, B.K., and Drummond, I.A. (2010). The zebrafish foxj1a transcription factor regulates cilia function in response to injury and epithelial stretch. Proc. Natl. Acad. Sci. USA 107, 18499-18504. https://doi.org/10.1073/pnas.1005998107
  16. Horowitz, J.C., and Thannickal, V.J. (2006). Epithelial-mesenchymal interactions in pulmonary fibrosis. Semin. Respir. Crit. Care Med. 27, 600-612. https://doi.org/10.1055/s-2006-957332
  17. Hu, Q., Wu, Y., Tang, J., Zheng, W., Wang, Q., Nahirney, D., Duszyk, M., Wang, S., Tu, J.C., and Chen, X.Z. (2014). Expression of polycystins and fibrocystin on primary cilia of lung cells. Biochem. Cell Biol. 92, 547-554. https://doi.org/10.1139/bcb-2014-0062
  18. Huangfu, D., and Anderson, K.V. (2005). Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. USA 102, 11325-11330. https://doi.org/10.1073/pnas.0505328102
  19. Jain, R., Pan, J., Driscoll, J.A., Wisner, J.W., Huang, T., Gunsten, S.P., You, Y. and Brody, S.L. (2010). Temporal relationship between primary and motile ciliogenesis in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 43, 731-739. https://doi.org/10.1165/rcmb.2009-0328OC
  20. Lancaster, M.A., Schroth, J., and Gleeson, J.G. (2011). Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat. Cell Biol. 13, 700-707. https://doi.org/10.1038/ncb2259
  21. Litingtung, Y., Lei, L., Westphal, H., and Chiang, C. (1998). Sonic hedgehog is essential to foregut development. Nat. Genet. 20, 58-61. https://doi.org/10.1038/1717
  22. Marszalek, J.R., Liu, X., Roberts, E.A., Chui, D., Marth, J.D., Williams, D.S., and Goldstein, L.S. (2000). Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102, 175-187. https://doi.org/10.1016/S0092-8674(00)00023-4
  23. Ocbina, P.J., and Anderson, K.V. (2008). Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev. Dyn. 237, 2030-2038. https://doi.org/10.1002/dvdy.21551
  24. Pepicelli, C.V., Lewis, P.M., and McMahon, A.P. (1998). Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol. 8, 1083-1086. https://doi.org/10.1016/S0960-9822(98)70446-4
  25. Piontek, K., Menezes, L.F., Garcia-Gonzalez, M.A., Huso, D.L., and Germino, G.G. (2007). A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat. Med. 13, 1490-1495. https://doi.org/10.1038/nm1675
  26. Raghu, G., Collard, H.R., Egan, J.J., Martinez, F.J., Behr, J., Brown, K.K., Colby, T.V., Cordier, J.F., Flaherty, K.R., Lasky, J.A., et al. (2011). An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 183, 788-824. https://doi.org/10.1164/rccm.2009-040GL
  27. Rohatgi, R., Milenkovic, L., and Scott, M.P. (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372-376. https://doi.org/10.1126/science.1139740
  28. Seeger-Nukpezah, T., and Golemis, E.A. (2012). The extracellular matrix and ciliary signaling. Curr. Opin. Cell Biol. 24, 652-661. https://doi.org/10.1016/j.ceb.2012.06.002
  29. Trempus, C.S., Song, W., Lazrak, A., Yu, Z., Creighton, J.R., Young, B.M., Heise, R.L., Yu, Y.R., Ingram, J.L., Tighe, R.M., et al. (2017). A novel role for primary cilia in airway remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L328-L338. https://doi.org/10.1152/ajplung.00284.2016
  30. Verghese, E., Ricardo, S.D., Weidenfeld, R., Zhuang, J., Hill, P.A., Langham, R.G., and Deane, J.A. (2009). Renal primary cilia lengthen after acute tubular necrosis. J. Am. Soc. Nephrol. 20, 2147-2153. https://doi.org/10.1681/ASN.2008101105
  31. Verghese, E., Weidenfeld, R., Bertram, J.F., Ricardo, S.D., and Deane, J.A. (2008). Renal cilia display length alterations following tubular injury and are present early in epithelial repair. Nephrol. Dial. Transplant. 23, 834-841.
  32. Visscher, D.W., and Myers, J.L. (2006). Histologic spectrum of idiopathic interstitial pneumonias. Proc. Am. Thorac. Soc. 3, 322-329. https://doi.org/10.1513/pats.200602-019TK
  33. Wilson, C.W., and Chuang, P.T. (2010). Mechanism and evolution of cytosolic Hedgehog signal transduction. Development 137, 2079-2094.
  34. Wong, S.Y., Seol, A.D., So, P.L., Ermilov, A.N., Bichakjian, C.K., Epstein, E.H., Jr., Dlugosz, A.A., and Reiter, J.F. (2009). Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat. Med. 15, 1055-1061. https://doi.org/10.1038/nm.2011
  35. Yang, I.V., Coldren, C.D., Leach, S.M., Seibold, M.A., Murphy, E., Lin, J., Rosen, R., Neidermyer, A.J., McKean, D.F., Groshong, S.D., et al. (2013). Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis. Thorax 68, 1114-1121. https://doi.org/10.1136/thoraxjnl-2012-202943
  36. Zhou, D., Li, Y., Zhou, L., Tan, R.J., Xiao, L., Liang, M., Hou, F.F., and Liu, Y. (2014). Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J. Am. Soc. Nephrol. 25, 2187-2200. https://doi.org/10.1681/ASN.2013080893