Post-Transcriptional Control of Tropoelastin in Aortic Smooth Muscle Cells Affects Aortic Dissection Onset

  • Qi, You-Fei (Department of Vascular Surgery, the Second Xiang-ya Hospital, Central South University) ;
  • Shu, Chang (Department of Vascular Surgery, the Second Xiang-ya Hospital, Central South University) ;
  • Xiao, Zhan-Xiang (Department of Vascular Surgery, Hainan General Hospital) ;
  • Luo, Ming-Yao (Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Fang, Kun (Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Guo, Yuan-Yuan (Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital) ;
  • Zhang, Wen-Bo (Department of Vascular Surgery, Hainan General Hospital) ;
  • Yue, Jie (Department of Vascular Surgery, Hainan General Hospital)
  • Received : 2017.09.09
  • Accepted : 2017.12.21
  • Published : 2018.03.31


Aortic dissection (AD) is a catastrophic disease with high mortality and morbidity, characterized with fragmentation of elastin and loss of smooth muscle cells. Although AD has been largely attributable to polymorphisms defect in the elastin-coding gene, tropoelastin (TE), other undermined factors also appear to play roles in AD onset. Here, we investigated the effects of post-transcriptional control of TE by microRNAs (miRNAs) on elastin levels in aortic smooth muscle cells (ASMC). We found that miR-144-3p is a miRNA that targets TE mRNA in both human and mouse. Bioinformatics analyses and dual luciferase reporter assay showed that miR-144-3p inhibited protein translation of TE, through binding to the 3'-UTR of the TE mRNA. Interestingly, higher miR-144-3p levels and lower TE were detected in the ASMC obtained from AD patients, compared to those from non-AD controls. In a mouse model for human AD, infusion of adeno-associated viruses (serotype 6) carrying antisense for miR-144-3p (asmiR-144-3p) under CAG promoter significantly reduced the incidence and severity of AD, seemingly through enhancement of TE levels in ASMC. Thus, our data suggest an essential role of miR-144-3p on the pathogenesis of AD.


  1. Agarwal, V., Bell, G.W., Nam, J.W., and Bartel, D.P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, doi: 10.7554/eLife.05005.
  2. Cao, M.X., Jiang, Y.P., Tang, Y.L., and Liang, X.H. (2017). The crosstalk between lncRNA and microRNA in cancer metastasis: orchestrating the epithelial-mesenchymal plasticity. Oncotarget 8, 12472-12483.
  3. Chuang, T.D., Pearce, W.J., and Khorram, O. (2015). miR-29c induction contributes to downregulation of vascular extracellular matrix proteins by glucocorticoids. Am J Physiol Cell Physiol. 309, C117-125.
  4. Ekman, M., Bhattachariya, A., Dahan, D., Uvelius, B., Albinsson, S., and Sward, K. (2013). Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness. PLoS One 8, e82308.
  5. Forman, J.J., Legesse-Miller, A., and Coller, H.A. (2008). A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105, 14879-14884.
  6. Helbig, G., and Krzemien, S. (2004). Clinical significance of elastin turnover--focus on diseases affecting elastic fibres. Wiad Lek 57, 360-363.
  7. Isselbacher, E.M., Lino Cardenas, C.L., and Lindsay, M.E. (2016). Hereditary Influence in Thoracic Aortic Aneurysm and Dissection. Circulation 133, 2516-2528.
  8. Ivey, K.N., Muth, A., Arnold, J., King, F.W., Yeh, R.F., Fish, J.E., Hsiao, E.C., Schwartz, R.J., Conklin, B.R., Bernstein, H.S., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2, 219-229.
  9. Janoff, A. (1983). Do neutrophils play a major role in elastin turnover of normal tissues? Am. Rev. Respir. Dis. 127, 782-783.
  10. Jiang, W., Zhang, Z., Yang, H., Lin, Q., Han, C., and Qin, X. (2017). The involvement of miR-29b-3p in arterial calcification by targeting matrix metalloproteinase-2. BioMed. Res. Int. 2017, 6713606.
  11. Jiang, X., Shan, A., Su, Y., Cheng, Y., Gu, W., Wang, W., Ning, G., and Cao, Y. (2015). miR-144/451 Promote cell proliferation via targeting PTEN/AKT pathway in insulinomas. Endocrinology 156, 2429-2439.
  12. Li, Q. and Gregory, R.I. (2008). MicroRNA regulation of stem cell fate. Cell Stem Cell 2, 195-196.
  13. Maegdefessel, L., Azuma, J., Toh, R., Merk, D.R., Deng, A., Chin, J.T., Raaz, U., Schoelmerich, A.M., Raiesdana, A., Leeper, N.J., et al. (2012). Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J. Clin. Invest. 122, 497-506.
  14. Mallat, Z., Tedgui, A., and Henrion, D. (2016). Role of microvascular tone and extracellular matrix contraction in the regulation of interstitial fluid: implications for aortic dissection. Arterioscler. Thromb. Vasc. Biol. 36, 1742-1747.
  15. Merk, D.R., Chin, J.T., Dake, B.A., Maegdefessel, L., Miller, M.O., Kimura, N., Tsao, P.S., Iosef, C., Berry, G.J., Mohr, F.W., et al. (2012). miR-29b participates in early aneurysm development in Marfan syndrome. Circ. Res. 110, 312-324.
  16. Morello, F., Piler, P., Novak, M., and Kruzliak, P. (2014). Biomarkers for diagnosis and prognostic stratification of aortic dissection: challenges and perspectives. Biomarkers Med. 8, 931-941.
  17. Nygaard, R.H., Maynard, S., Schjerling, P., Kjaer, M., Qvortrup, K., Bohr, V.A., Rasmussen, L.J., Jemec, G.B., and Heidenheim, M. (2016). Acquired localized cutis laxa due to increased elastin turnover. Case Rep. Dermatol. 8, 42-51.
  18. Okamura, H., Emrich, F., Trojan, J., Chiu, P., Dalal, A.R., Arakawa, M., Sato, T., Penov, K., Koyano, T., Pedroza, A., et al. (2017). Long-term miR-29b suppression reduces aneurysm formation in a Marfan mouse model. Physiol. Rep. 5, pii: e13257.
  19. Ott, C.E., Grunhagen, J., Jager, M., Horbelt, D., Schwill, S., Kallenbach, K., Guo, G., Manke, T., Knaus, P., Mundlos, S., et al. (2011). MicroRNAs differentially expressed in postnatal aortic development downregulate elastin via 3′ UTR and coding-sequence binding sites. PLoS One 6, e16250.
  20. Papagiannakopoulos, T., and Kosik, K.S. (2009). MicroRNA-124: micromanager of neurogenesis. Cell Stem Cell 4, 375-376.
  21. Patel, P.D., and Arora, R.R. (2008). Pathophysiology, diagnosis, and management of aortic dissection. Ther Adv Cardiovasc Dis 2, 439-468.
  22. Ray, J.L., Leach, R., Herbert, J.M., and Benson, M. (2001). Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci. 23, 185-188.
  23. Sato, F., Seino-Sudo, R., Okada, M., Sakai, H., Yumoto, T., and Wachi, H. (2017). Lysyl Oxidase Enhances the Deposition of Tropoelastin through the Catalysis of Tropoelastin Molecules on the Cell Surface. Biol. Pharm. Bull. 40, 1646-1653.
  24. Segreto, A., Chiusaroli, A., De Salvatore, S., and Bizzarri, F. (2014). Biomarkers for the diagnosis of aortic dissection. J. Card Surg. 29, 507-511.
  25. Seok, H., Ham, J., Jang, E.S., and Chi, S.W. (2016). MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Mol. Cells 39, 375-381.
  26. Shao, Y., Li, P., Zhu, S.T., Yue, J.P., Ji, X.J., Ma, D., Wang, L., Wang, Y.J., Zong, Y., Wu, Y.D., et al. (2016). MiR-26a and miR-144 inhibit proliferation and metastasis of esophageal squamous cell cancer by inhibiting cyclooxygenase-2. Oncotarget 7, 15173-15186.
  27. Stone, P.J., Lucey, E.C., Snider, G.L., and Franzblau, C. (1997). Distribution of elastin in hamsters and the turnover rates of different elastin pools. Proc. Soc. Exp. Biol. Med. 215, 94-101.
  28. Sudo, R., Sato, F., Azechi, T., and Wachi, H. (2015). MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells. Genes Cells 20, 1077-1087.
  29. Vega-Badillo, J., Gutierrez-Vidal, R., Hernandez-Perez, H.A., Villamil-Ramirez, H., Leon-Mimila, P., Sanchez-Munoz, F., Moran-Ramos, S., Larrieta-Carrasco, E., Fernandez-Silva, I., Mendez-Sanchez, N., et al. (2016). Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 6, 1383-1391.
  30. Zhang, P., Huang, A., Ferruzzi, J., Mecham, R.P., Starcher, B.C., Tellides, G., Humphrey, J.D., Giordano, F.J., Niklason, L.E., and Sessa, W.C. (2012). Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels--brief report. Arterioscler Thromb. Vasc. Biol. 32, 756-759.
  31. Zhang, S.Y., Lu, Z.M., Lin, Y.F., Chen, L.S., Luo, X.N., Song, X.H., Chen, S.H., and Wu, Y.L. (2016). miR-144-3p, a tumor suppressive microRNA targeting ETS-1 in laryngeal squamous cell carcinoma. Oncotarget 7, 11637-11650.