DOI QR코드

DOI QR Code

Cooperative Instruction of Signaling and Metabolic Pathways on the Epigenetic Landscape

  • Kim, Jung-Ae (Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2018.02.25
  • Accepted : 2018.03.28
  • Published : 2018.04.30

Abstract

Cells cope with diverse intrinsic and extrinsic stimuli in order to make adaptations for survival. The epigenetic landscape plays a crucial role in cellular adaptation, as it integrates the information generated from stimuli. Signaling pathways induced by stimuli communicate with chromatin to change the epigenetic landscape through regulation of epigenetic modifiers. Metabolic dynamics altered by these stimuli also affect the activity of epigenetic modifiers. Here, I review the current understanding of epigenetic regulation via signaling and metabolic pathways. In addition, I will discuss possible ways to achieve specificity of epigenetic modifications through the cooperation of stimuli-induced signal transduction and metabolic reprogramming.

Keywords

cancer;differentiation;epigenetics;metabolism;signaling

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Sutendra, G., Kinnaird, A., Dromparis, P., Paulin, R., Stenson, T.H., Haromy, A., Hashimoto, K., Zhang, N., Flaim, E., and Michelakis, E.D. (2014). A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84-97. https://doi.org/10.1016/j.cell.2014.04.046
  2. TeSlaa, T., Chaikovsky, A.C., Lipchina, I., Escobar, S.L., Hochedlinger, K., Huang, J., Graeber, T.G., Braas, D., and Teitell, M.A. (2016). alpha-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells. Cell Metabol. 24, 485-493. https://doi.org/10.1016/j.cmet.2016.07.002
  3. Wellen, K.E., Hatzivassiliou, G., Sachdeva, U.M., Bui, T.V., Cross, J.R., and Thompson, C.B. (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076-1080. https://doi.org/10.1126/science.1164097
  4. Wise, D.R., and Thompson, C.B. (2010). Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35, 427-433. https://doi.org/10.1016/j.tibs.2010.05.003
  5. Zhao, W., Kruse, J.P., Tang, Y., Jung, S.Y., Qin, J., and Gu, W. (2008). Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451, 587-590. https://doi.org/10.1038/nature06515
  6. Pan, M., Reid, M.A., Lowman, X.H., Kulkarni, R.P., Tran, T.Q., Liu, X., Yang, Y., Hernandez-Davies, J.E., Rosales, K.K., Li, H., et al. (2016). Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090-1101. https://doi.org/10.1038/ncb3410
  7. Pavlova, N.N., and Thompson, C.B. (2016). The emerging hallmarks of cancer metabolism. Cell Metabol. 23, 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
  8. Portela, A., and Esteller, M. (2010). Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057-1068. https://doi.org/10.1038/nbt.1685
  9. Reid, M.A., Dai, Z., and Locasale, J.W. (2017). The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298-1306. https://doi.org/10.1038/ncb3629
  10. Shyh-Chang, N., Locasale, J.W., Lyssiotis, C.A., Zheng, Y., Teo, R.Y., Ratanasirintrawoot, S., Zhang, J., Onder, T., Unternaehrer, J.J., Zhu, H., et al. (2013). Influence of threonine metabolism on Sadenosylmethionine and histone methylation. Science 339, 222-226. https://doi.org/10.1126/science.1226603
  11. Stopa, N., Krebs, J.E., and Shechter, D. (2015). The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell. Mol. Life Sci. 72, 2041-2059. https://doi.org/10.1007/s00018-015-1847-9
  12. Sun, L., Huang, Y., Wei, Q., Tong, X., Cai, R., Nalepa, G., and Ye, X. (2015). Cyclin E-CDK2 protein phosphorylates plant homeodomain finger protein 8 (PHF8). and regulates its function in the cell cycle. J. Biol. Chem. 290, 4075-4085. https://doi.org/10.1074/jbc.M114.602532
  13. Nin, V., Escande, C., Chini, C.C., Giri, S., Camacho-Pereira, J., Matalonga, J., Lou, Z., and Chini, E.N. (2012). Role of deleted in breast cancer 1 (DBC1). protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. J. Biol. Chem. 287, 23489-23501. https://doi.org/10.1074/jbc.M112.365874
  14. Lee, J.V., Carrer, A., Shah, S., Snyder, N.W., Wei, S., Venneti, S., Worth, A.J., Yuan, Z.F., Lim, H.W., Liu, S., et al. (2014). Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metabol. 20, 306-319. https://doi.org/10.1016/j.cmet.2014.06.004
  15. Li, S., Swanson, S.K., Gogol, M., Florens, L., Washburn, M.P., Workman, J.L., and Suganuma, T. (2015). Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism. Mol. Cell 60, 408-421. https://doi.org/10.1016/j.molcel.2015.09.024
  16. Liu, F., Zhao, X., Perna, F., Wang, L., Koppikar, P., Abdel-Wahab, O., Harr, M.W., Levine, R.L., Xu, H., Tefferi, A., et al. (2011). JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19, 283-294. https://doi.org/10.1016/j.ccr.2010.12.020
  17. Mattaini, K.R., Sullivan, M.R., and Vander Heiden, M.G. (2016). The importance of serine metabolism in cancer. J. Cell Biol. 214, 249-257. https://doi.org/10.1083/jcb.201604085
  18. Mentch, S.J., and Locasale, J.W. (2016). One-carbon metabolism and epigenetics: understanding the specificity. Ann. New York Acad. Sci. 1363, 91-98. https://doi.org/10.1111/nyas.12956
  19. Mentch, S.J., Mehrmohamadi, M., Huang, L., Liu, X., Gupta, D., Mattocks, D., Gomez Padilla, P., Ables, G., Bamman, M.M., Thalacker-Mercer, A.E., et al. (2015). Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metabol. 22, 861-873. https://doi.org/10.1016/j.cmet.2015.08.024
  20. Mews, P., Donahue, G., Drake, A.M., Luczak, V., Abel, T., and Berger, S.L. (2017). Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381-386. https://doi.org/10.1038/nature22405
  21. Mihaylova, M.M., and Shaw, R.J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023. https://doi.org/10.1038/ncb2329
  22. Hwang, I.Y., Kwak, S., Lee, S., Kim, H., Lee, S.E., Kim, J.H., Kim, Y.A., Jeon, Y.K., Chung, D.H., Jin, X., et al. (2016). Psat1-dependent fluctuations in alpha-Ketoglutarate affect the timing of ESC differentiation. Cell Metabol. 24, 494-501. https://doi.org/10.1016/j.cmet.2016.06.014
  23. Katoh, Y., Ikura, T., Hoshikawa, Y., Tashiro, S., Ito, T., Ohta, M., Kera, Y., Noda, T., and Igarashi, K. (2011). Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol. Cell 41, 554-566. https://doi.org/10.1016/j.molcel.2011.02.018
  24. Kim, J.E., Chen, J., and Lou, Z. (2008). DBC1 is a negative regulator of SIRT1. Nature 451, 583-586. https://doi.org/10.1038/nature06500
  25. Kooistra, S.M., and Helin, K. (2012). Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 13, 297-311. https://doi.org/10.1038/nrm3327
  26. Kottakis, F., Nicolay, B.N., Roumane, A., Karnik, R., Gu, H., Nagle, J.M., Boukhali, M., Hayward, M.C., Li, Y.Y., Chen, T., et al. (2016). LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390-395. https://doi.org/10.1038/nature20132
  27. Kryukov, G.V., Wilson, F.H., Ruth, J.R., Paulk, J., Tsherniak, A., Marlow, S.E., Vazquez, F., Weir, B.A., Fitzgerald, M.E., Tanaka, M., et al. (2016). MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214-1218. https://doi.org/10.1126/science.aad5214
  28. Lau, A.W., Liu, P., Inuzuka, H., and Gao, D. (2014). SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am. J. Cancer Res. 4, 245-255.
  29. Hay, N. (2016). Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635-649. https://doi.org/10.1038/nrc.2016.77
  30. Huang, W.C., and Chen, C.C. (2005). Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol. Cell. Biol. 25, 6592-6602. https://doi.org/10.1128/MCB.25.15.6592-6602.2005
  31. Baba, A., Ohtake, F., Okuno, Y., Yokota, K., Okada, M., Imai, Y., Ni, M., Meyer, C.A., Igarashi, K., Kanno, J., et al. (2011). PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat. Cell Biol. 13, 668-675. https://doi.org/10.1038/ncb2228
  32. Badeaux, A.I., and Shi, Y. (2013). Emerging roles for chromatin as a signal integration and storage platform. Nat. Rev. Mol. Cell Biol. 14, 211-224. https://doi.org/10.1038/nrm3545
  33. Boland, M.J., Nazor, K.L., and Loring, J.F. (2014). Epigenetic regulation of pluripotency and differentiation. Circ. Res. 115, 311-324. https://doi.org/10.1161/CIRCRESAHA.115.301517
  34. Cai, L., Sutter, B.M., Li, B., and Tu, B.P. (2011). Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426-437. https://doi.org/10.1016/j.molcel.2011.05.004
  35. Canto, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060. https://doi.org/10.1038/nature07813
  36. Carey, B.W., Finley, L.W., Cross, J.R., Allis, C.D., and Thompson, C.B. (2015). Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413-416. https://doi.org/10.1038/nature13981
  37. Cha, T.L., Zhou, B.P., Xia, W., Wu, Y., Yang, C.C., Chen, C.T., Ping, B., Otte, A.P., and Hung, M.C. (2005). Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310, 306-310. https://doi.org/10.1126/science.1118947
  38. Chang, H.C., and Guarente, L. (2014). SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metabol. 25, 138-145. https://doi.org/10.1016/j.tem.2013.12.001

Cited by

  1. Reciprocal Regulation of Metabolic Reprogramming and Epigenetic Modifications in Cancer vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00394