Preparation of PDMS Surface Modifier Using Silane-Functionalized Polymer Precursor Manufacture and Their Properties

실란 기능화 아크릴 고분자 전구체를 이용한 PDMS 표면 개질제 제조 및 표면 물성

  • Shin, Jae-Hyeon (Department of Materials Engineering, Kangwon National University) ;
  • Kim, Nahae (Department of Materials Engineering, Kangwon National University) ;
  • Kim, Juyoung (Department of Materials Engineering, Kangwon National University)
  • 신재현 (강원대학교 기능소재공학과) ;
  • 김나혜 (강원대학교 기능소재공학과) ;
  • 김주영 (강원대학교 기능소재공학과)
  • Received : 2018.11.18
  • Accepted : 2018.12.17
  • Published : 2018.12.30


Plasma treatment and corona treatment have been used for surface modification of polydimethylsiloxane (PDMS) film by activating its surface with the -OH group. Adhesion promoter or coupling agent was also used to improve adhesion of PDMS film with various materials. However, obtained hydrophilicity onto the surface of PDMS films with those processes was transient and vulnerable. In this study, a new alkoxysilane-functionalized acrylic polymer precursor was first synthesized by copolymerization process, and then was reacted with HO-terminated PDMS through condensation reaction to prepare a new surface modifier for PDMS film. The structure and molecular weight of the prepared surface modifier were confirmed by 1H-NMR and GPC measurement. Surface properties of surface modifier-coated PDMS films were also investigated by using XPS, ATR and WCA analysis. The adhesion between the PDMS film and the surface modifier was tested using cross-cut test.

JGMHB1_2018_v19n4_154_f0001.png 이미지

Figure 1. Schematic presentation for physical surface modification process of PDMS.

JGMHB1_2018_v19n4_154_f0002.png 이미지

Figure 2. Chemical surface treatment method using coupling agent.

JGMHB1_2018_v19n4_154_f0003.png 이미지

Figure 3. Surface treatment using graft polymeri-zation.

JGMHB1_2018_v19n4_154_f0004.png 이미지

Figure 4. Expected chemical structure of alkoxysilanefunctionalized acrylic polymer precursor.

JGMHB1_2018_v19n4_154_f0005.png 이미지

Figure 5. Expected chemical structure of surface modifier prepared with reaction of MP copolymer with HO-PDMS.

JGMHB1_2018_v19n4_154_f0006.png 이미지

Figure 6. Schematic presentation for microphase-separation occurring surface-modifier-coated PDMS film.

JGMHB1_2018_v19n4_154_f0007.png 이미지

Figure 7. Surface modifier solutions prepared with reaction of MP copolymers with HO-PDMS at various compositions

JGMHB1_2018_v19n4_154_f0008.png 이미지

Figure 8. FT-IR results of alkoxysilane-functionalized acrylic polymer precursor.

JGMHB1_2018_v19n4_154_f0009.png 이미지

Figure 9. 1H-NMR result of (a) MP11 precursor, (b) MP21 precursor.

JGMHB1_2018_v19n4_154_f0010.png 이미지

Figure 10. FT-IR results of alkoxysilane-functionalized acrylic polymer precursor.

JGMHB1_2018_v19n4_154_f0011.png 이미지

Figure 11. ATR results of (a) unmodified PDMS film, (b) MP11-PDMS(1:2) coated PDMS film, (c) MP21-PDMS (1:2) coated PDMS film.

JGMHB1_2018_v19n4_154_f0012.png 이미지

Figure 12. Water contact angles of unmodified PDMS film and surface modifier-coated PDMS film.

JGMHB1_2018_v19n4_154_f0013.png 이미지

Figure 13. Cross cut test results of (a)MP11-PDMS (1:2) and (b)MP21-PDMS (1:2) coated PDMS films.

Table 1. Recipe for the synthesis of alkoxysilane-functionalized acrylic polymer precursors

JGMHB1_2018_v19n4_154_t0001.png 이미지

Table 2. Synthetic recipe for surface modifier via condensation reaction between MP copolymers and hydroxyl-terminated PDMS(Weight ratio)

JGMHB1_2018_v19n4_154_t0002.png 이미지

Table 3. Molecular weight of MP copolymers synthesized at different molar ratio of monomers

JGMHB1_2018_v19n4_154_t0003.png 이미지

Table 4. XPS results of surface modifier-coated PDMS films and unmodified PDMS film

JGMHB1_2018_v19n4_154_t0004.png 이미지

Table 5. Classification criteria according to ASTM D 3359

JGMHB1_2018_v19n4_154_t0005.png 이미지


Supported by : 산업기술평가관리원(KEIT), 한국에너지기술평가원(KETEP)


  1. N.E Stankova, P.A Atanasov, Ru.G. Nikov, R.G. Nikov, et al., Appl. Surf. Sci., 374, 96-103 (2016).
  2. Y. H. Kim, M. G. Jeong, H. O. Seo, et al. Appl. Surf. Sci., 258, 7562-7566 (2012).
  3. J. M K. Ng, I. Gitlin, A. D. Stroock, G. M. Whitesides, Electrophoresis, 23, 3461-3473 (2002).<3461::AID-ELPS3461>3.0.CO;2-8
  4. E. P. Kartalob, W. F. Anderson, A. Schere, Journal of Nanoscience and Nanotechnology, 6, 2265-2277 (2006).
  5. D.M. Smith, R. G. Lehmann, R. Narayan, G.E Kozerski, Compost Science & Untilization, 6, 6-12 (1998).
  6. Li K, Zeng X, Li H, Colloids Surf., A : Physic. Eng. Asp., 445, 111-118 (2014).
  7. Z. Yuan, J. Bin, X. Wang, Surf. Coat. Technol., 254, 97-103(2014).
  8. S. Pinto, P. Alves, C.M. Matos, Colloid Surf. B: Biointerf., 81, 20-26(2010).
  9. S. H. Tan, N. Nguyen, Y. C. Chua, Biomicrofluidics, 4, 032204-1-032204-8, (2010).
  10. Z. Almutairi, C. L. Ren, L. Simon, Colloids Surf., A : Physic. Eng. Asp., 415, 406-412(2012).
  11. S. Wu. Surface and interfacial tensions of polymers, oligomers, plasticizers, and organic pigments, Polymer handbook (Eds J. Brandup, E. H. Immergut, E. A Grulke, A. Abe, D. R. Bloch, Wiley, New York), 1989.
  12. B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.M Graubner, O.Nuyken, Surf. Sci., 1067, (2003).
  13. J. Kim, M.K Chaudhury, M.J Owen, J. Colloid Interface Sci., 226, 231-236 (2000).
  14. K. Kim, S. W Park, S.S. Yang, BioChip Journal, 4, 148-154 (2010).
  15. C. W. Beh, W. Zhou, T. Wang, Lab Ship, 12, 4120-4127(2012).
  16. C. Cheng, K.T. Powell, E. Koshdel, K. L. Wooley, Macromol., 40, 7195-7207 (2007).
  17. H. Samu, V. Juan V. C. Rodriguez, J. Kreutzer, Appl. Surf. Sci., 258, 9864-9875 (2012).
  18. H. T. Kim, O. C. Jeong, Microelectron. Eng., 88, 2281-2285 (2011).
  19. L. A. Bloomfield, Journal of adhesion & adhesive, 68, 239-237 (2016).
  20. S.C. Debora, C. V. Eliane, A. Galembeck, Polym. Eng. Sci., 50, 606-612 (2010).
  21. Ying Ma, Xinyu Cao, Xinjian Feng, Yongmei Ma, Hong Zou, Polymer, 48, 7455-7460 (2007).