DOI QR코드

DOI QR Code

Effects of Inoculant Application Level on Chemical Compositions of Fermented Chestnut Meal and Its Rumen Fermentation Indices

밤 발효사료 제조과정에서 미생물 첨가수준이 영양소 함량과 반추위 내 발효특성에 미치는 영향

  • Kim, Dong-Hyeon (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University) ;
  • Joo, Young-Ho (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University) ;
  • Lee, Hyuk-Jun (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University) ;
  • Lee, Seong-Shin (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University) ;
  • Paradhipta, Dimas H.V. (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University) ;
  • Choi, Nag-Jin (Department of Animal Science, Chonbuk National University) ;
  • Kim, Sam-Churl (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University)
  • 김동현 (경상대학교 응용생명과학부(BK21Plus, 농업생명과학연구원)) ;
  • 주영호 (경상대학교 응용생명과학부(BK21Plus, 농업생명과학연구원)) ;
  • 이혁준 (경상대학교 응용생명과학부(BK21Plus, 농업생명과학연구원)) ;
  • 이성신 (경상대학교 응용생명과학부(BK21Plus, 농업생명과학연구원)) ;
  • ;
  • 최낙진 (전북대학교 동물자원과학과) ;
  • 김삼철 (경상대학교 응용생명과학부(BK21Plus, 농업생명과학연구원))
  • Received : 2018.02.02
  • Accepted : 2018.03.07
  • Published : 2018.05.31

Abstract

This study aimed to estimate the effect of inoculant application level on chemical composition and bacterial count of fermented chestnut meal (FCM), and its rumen fermentation characteristics. The inoculant contained Lactobacillus acidophilus ($1.2{\times}10^{10}cfu/g$), Bacillus subtilis ($2.1{\times}10^{10}cfu/g$), and Saccharomyces cerevisiae ($2.3{\times}10^{10}cfu/g$). The chestnut meal mixed with molasses, double distilled water, and inoculant at 1 kg, 3 g, 480 mL, and 20 mL ratio for the basal chestnut meal diet. The double distilled water from basal chestnut meal diet was substituted with bacterial inoculant at a level of 0 (Control), 20 (Medium), and 40 mL (High) in the experimental diets. The mixed experimental diets were incubated at $39^{\circ}C$ for 7, 14, and 21 days, respectively. On 7 days of FCM incubation, the contents of crude protein (CP) (quadratic, P=0.043) and neutral detergent fiber (quadratic, P=0.071) decreased by increases of inoculant application levels, whereas bacterial count (quadratic, P=0.065) and rumen $NH_3-N$ (linear, P=0.063) increased. By increases of inoculant application levels on 14 days of FCM incubation, the increases were found on dry matter (DM) (quadratic, P=0.085), CP (quadratic, P=0.059), acid detergent fiber (quadratic, P=0.056), in vitro DM digestibility (linear, P=0.002), rumen total volatile fatty acid (VFA) (linear, P=0.057), and rumen iso-butyrate (linear, P=0.054). However, the decreases were found on bacterial count (linear, P=0.002), propionate (linear, P=0.099), and butyrate (quadratic, P=0.082). On 21 days of FCM incubation, in vitro DM digestibility (linear, P=0.002) and total VFA (linear, P=0.001) increased by increases of inoculant application levels, whereas the contents of CP (quadratic, P=0.034) and neutral detergent fiber (quadratic, P=0.047) decreased. These results indicate that the FCM with a medium level of inoculant application and 14 of fermentation had beneficial effects by increasing DM digestibility and rumen total VFA content, without altering bacterial count.

Acknowledgement

Supported by : 농림식품기술기획평가원, 경상대학교

References

  1. Stronach, S. M., Rudd, T., Lester, J. N., 1986, Anaerobic digestion process in industrial wastewater treatment. Springe-verlag, Berlin Heidelberg.
  2. Kim, Y. I., Park, J. M., Lee, Y. H., Lee, M., Choi, D. Y., Kwak, W. S., 2015, Effect of by-product feed-based silage feeding on the performance, blood metabolites, and carcass characteristics of Hanwoo steers (a Field study), Asian Australas. J. Anim. Sci., 28, 180-187.
  3. Lee, H. J., Choi, I. H., Kim, D. H., Amanullah, S. M., Kim, S. C., 2016, Nutritional characterization of tannin rich chestnut (Castanea) and its meal for pig. J. Appl. Anim. Res., 44, 258-262. https://doi.org/10.1080/09712119.2015.1031779
  4. Mohan, B., Kadirvel, R., Bhaskaran, M., Natarajan, A., 1995, Effect of probiotic supplemenation on serum/yolk cholesterol and on egg shell thickness in layers, Br. Poult. Sci., 36, 799-803. https://doi.org/10.1080/00071669508417824
  5. Muck, R. E., 1993, The role of silage additives in making high quality silage, Proceedings of the national silage production conference on silage production from seed to animal, Stracuse, NY, USA.
  6. Oh, Y. G., Kim, D. W., Baek, Y. C., Lee, H. J., Jeong, H. J., Lee, S. D., So, K. M., Kim, M. S., Lee, Y. K., Kim, K. H., Lee, S., Kim, M. J., 2017, Easy fermented feed manufacturing technology, Nat. Inst. Anim. Sci., Wanju, Korea.
  7. Orskov, E. R., Fraser, C., Gordon, J. G., 1974, Effect of processing of cereals on rumen fermentation, digestibility, rumination time, and firmness of subcutaneous fat in lambs. Brit. J. Nutr., 32, 59-69. https://doi.org/10.1079/BJN19740058
  8. SAS, 2002, SAS/STAT User's Guide: Version 8.2 SAS Institute Inc., Cary, NC.
  9. Shin, H. T., Keum, D. H., Lee, H. W., Rhee, D. K., Hwnag, B. S., Lee, L. H., 2001, Screening of yeasts for the development of direct-fed microbials. Kor. J. Anim. Sci. Technol., 43, 721-726.
  10. Statistics Korea, 2015, Livestock production cost survey.
  11. Van Soest, P. J., Robertson, J. B., Lewis, B. A., 1991, Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition, J. Dairy Sci., 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  12. Chikagwa-Malunga, S. K., Adesogan, A. T., Szabo, N. J., Littell, R. C., Phatak, S. C., Kim, S. C., Arriola, C. M., Dean, D. B., Krueger, N. A., 2009, Nutritional characterization of Mucuna pruriens: Effect of replacing soybean meal with Mucuna on intake, digestibility, N balance and microbial protein synthesis in sheep. Anim. Feed Sci. Technol., 148, 107-123. https://doi.org/10.1016/j.anifeedsci.2008.03.006
  13. Ciesla, W. M., 2002, Non-wood forest products from temperate broad-leaved trees. Food Agric. Organ. UN, Rome, Italy.
  14. Demeyer, D. I., 1981, Rumen microbes and digestion of plant cell walls. Agric. Environ., 6, 294-337.
  15. De Vasconcelos, M. C. B. M., Bennett, R. N., Rosa, E. A. S., Ferreira-Cardoso, J. V., 2010, Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. J. Soc. Food. Agric., 90, 1578-1589. https://doi.org/10.1002/jsfa.4016
  16. Dunne, C., 2011, Adaptation of bacteria to the intestinal niche: Probiotics and gut disorder, inflam. Bowel Dis., 7, 136-145.
  17. FAOSTAT, Food and Agriculture Organization of the United States, 2010, Available: http://faostat.fao.org/site/339/default.aspx.
  18. Frutos, P., Raso, M., Hervas, G., Mantecon, A. R., Perez, V., Giraldez, F. J., 2004, Is there any detrimental effect when a chestnut hydrolysable tannin extract is include in the diet of finishing lambs? Anim. Res., 53, 127-136. https://doi.org/10.1051/animres:2004001
  19. Fuller, R., 1989, Probiotics in man and animals, A Revies. J. Appl. Bacteriol., 66, 369-377.
  20. Ghanem, N. B., Yusef, H. H., Mahrouse, H. K., 2000, Production of Aspergillus terreus xylanase in solid-state cultures: Application of the Plackett-Burmann experimental design to evaluate nutritional requirements. Bioresour Technol., 73, 113-121. https://doi.org/10.1016/S0960-8524(99)00155-8
  21. Golueke, C. G., Diaz, I. F., 1991, Inoculants and enzymes, In: The staff of biocycle J. Waste recycling, Editor, The biocycle guide to the art and science of composting, The JG press, Inc., Emmaus, PA, USA.
  22. Hobson, P. N., Stewart, C. S., 1997, The rumen microbial ecosystem, 2nd Ed., Blackie Academic and Professional, London, UK.
  23. Joo, Y. H., Jeong, H. H., Kim, D. H., Lee, H. J., Lee, S. S., Kim, S. B., Kim, S. C., 2017, Effects of replacing mushroom by-product with tofu by-product on the chemical composition, microbes, and rumen fermentation indices of fermented diets, J. Envir. Sci. Inter., 26, 651-659. https://doi.org/10.5322/JESI.2017.26.5.651
  24. Adesogan, A. T., 2005, Improving forage quality and animal performance with fibrolytic enzymes. 16th Florida Ruminant Nutrition Symposium, University of Florida, Gainesville, FL, USA.
  25. Adesogan, A. T., Krueger, N., Salawu, M. B., Dean, D. B., Staples, C. R., 2004, The influence of treatment with dual-purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. J. Dairy Sci., 87, 3407-3416. https://doi.org/10.3168/jds.S0022-0302(04)73476-1
  26. AOAC, 1990, Official methods of analysis, 15th edn., Association of Official Analytical Chemists, Arlington, VA, USA.
  27. Chaney, A. L., Marbach, E. P., 1962, Modified reagents for determination of urea and ammonia, Clin. Chem., 8, 130-132.
  28. Chang, S. S., Kwon, H. J., Lee, S. M., Cho, Y. M., Chung, K. Y., Choi, N. J., Lee, S. S., 2013, Effects of brewers grain, soybean curd and rice straw as an ingredient of TMR on growth performance, serum parameters and carcass characteristics of Hanwoo steers, Kor. J. Anim. Sci. Technol., 55, 51-59. https://doi.org/10.5187/JAST.2013.55.1.51