DOI QR코드

DOI QR Code

Adsorption Characteristics of Cu Ions by Zeolite Na-A Synthesized from Jeju Volcanic Rocks

제주 화산석으로부터 합성한 Na-A 제올라이트에 의한 Cu 이온의 흡착 특성

  • Ju, Chang-Sik (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 주창식 (부경대학교 화학공학과) ;
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Received : 2018.02.20
  • Accepted : 2018.03.14
  • Published : 2018.05.31

Abstract

The adsorption characteristics of Cu ions were studied using the zeolite Na-A synthesized from Jeju volcanic rocks. The effects of various operating parameters such as initial concentration of Cu ions, contact time, solution pH, and solution temperature were investigated in batch experiments. The adsorption of Cu ions by Na-A zeolite was fitted well by pseudo-second-order kinetics and the Langmuir isotherm model. The maximum adsorption capacity determined using the Langmuir isotherm model was 152.95 mg/g. In addition, the adsorption of Cu ions by zeolite Na-A was primarily controlled by particle diffusion model in comparison with the film diffusion model. As the temperature increased from 303 K to 323 K, ${\Delta}G^o$ decreased from -2.22 kJ/mol to -3.41 kJ/mol, indicating that the adsorption of Cu ions by Na-A zeolite is spontaneous process.

References

  1. Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C., Mentasti, E., 2003, Adsorption of heavy metals on Na-montmorillonit: Effect of pH and organic substances, Water Res., 37(7), 1619-1627. https://doi.org/10.1016/S0043-1354(02)00524-9
  2. Barakat, M. A., 2008, Adsorption of heavy metals from aqueous solutions on synthetic zeolite, Res. J. Environ. Sci., 2(1), 13-22. https://doi.org/10.3923/rjes.2008.13.22
  3. Chaisena, A., Rangsriwatananon, K., 2005, Synthesis of sodium zeolites from natural and modified diatomite, Mater. Lett., 59(12), 1474-1479. https://doi.org/10.1016/j.matlet.2004.10.073
  4. Escobar, C., Soto-Salazar, C., Ines Toral, M., 2006, Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater. J. Environ. Manage., 81(4), 384-391. https://doi.org/10.1016/j.jenvman.2005.11.012
  5. Faghihian, H., Godazandeha, N., 2009, Synthesis of nano crystalline zeolite Y from bentonite, J. Porous Mater., 16(3), 331-335. https://doi.org/10.1007/s10934-008-9204-0
  6. Huang, C., Chung, Y. C., Liou, M. R., 1996, Adsorption of Cu (II) and Ni (II) by pelletized biopolymer, J. Hazard. Mater., 45(2), 265-277. https://doi.org/10.1016/0304-3894(95)00096-8
  7. Ibrahim, H. S., Jamil, T. S., Hegazy, E. Z., 2010, Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models, J. Hazard. Mater., 182(1), 842-847. https://doi.org/10.1016/j.jhazmat.2010.06.118
  8. Ismail, M., Eltayeb, M., Maged, S. A., 2013, Synthesis of zeolite a from sudanese montmorillonite clay to remove nickel and copper ions from aqueous Solutions, Int. J. Chem. Biochem. Sci., 4, 46-56.
  9. Kagaya, S., Araki, Y., Hirai, N., Hasegawa, K., 2005, Coprecipitation with yttrium phosphate as a separation technique for iron (III), lead, and bismuth from cobalt, nickel, and copper matrices, Talanta, 67(1), 90-97. https://doi.org/10.1016/j.talanta.2005.02.013
  10. Kam, S. K., Hyun, S. S., Lee, M. G., 2011, Removal of divalent heavy metal ions by Na-P1 synthesized from Jeju Scoria, J. Environ. Sci. Int., 20(10), 1337-1345. https://doi.org/10.5322/JES.2011.20.10.1337
  11. Kam, S. K., Jeon, J. W., Lee, M. G., 2014, Removal of Cu(II) and Pb(II) by solid-phase extractant prepared by immobilizing D2EHPA with polysulfone, J. Environ. Sci. Int., 23(11), 1843-1850. https://doi.org/10.5322/JESI.2014.23.11.1843
  12. Kwon, J. S., Yun, S. T., Lee, J. H., Kim, S. O., Jo, H. Y., 2010, Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: kinetics and equilibria of sorption, J. Hazard. Mater., 174(1), 307-313. https://doi.org/10.1016/j.jhazmat.2009.09.052
  13. Larous, S., Meniai, A. H., Lehocine, M. B., 2005, Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust, Desalination, 185(1), 483-490. https://doi.org/10.1016/j.desal.2005.03.090
  14. Lee, C. H., Kam, S. K., Lee, M. G., 2017, Removal characteristics of Sr Ion by Na-A zeolite synthesized using coal fly ash generated from a thermal power plant, J. Environ. Sci. Int., 26(3), 363-371. https://doi.org/10.5322/JESI.2017.26.3.363
  15. Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption characteristic of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 23(12), 1987-1998. https://doi.org/10.5322/JESI.2014.23.12.1987
  16. Lee, M. G., Lim, J. H., Hyun, S. S., Kam, S. K., 2002, Adsorption characteristics of copper ion by Cheju scoria, Korean Chem. Eng. Res., 40(2), 252-258.
  17. Monser, L., Adhoum, N., 2002, Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep. Purif. Technol., 26(2), 137-146. https://doi.org/10.1016/S1383-5866(01)00155-1
  18. Pehlivan, E., Altun, T., Parlayici, S., 2009, Utilization of barley straws as biosorbents for $Cu^{2+}$ and $Pb^{2+}$ ions. J. Hazard. Mater., 164(2), 982-986. https://doi.org/10.1016/j.jhazmat.2008.08.115
  19. Pehlivan, E., Cetin, S., Yanik, B. H., 2006, Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash, J. Hazard. Mater., 135(1), 193-199. https://doi.org/10.1016/j.jhazmat.2005.11.049
  20. Qiu, W., Zheng, Y., 2009, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem. Eng. J., 145(3), 483-488. https://doi.org/10.1016/j.cej.2008.05.001
  21. Rahman, R. O. A., Ibrahim, H. A., Hanafy, M., Monem, N. M. A., 2010, Assessment of synthetic zeolite Na A X as sorbing barrier for strontium in a radioactive disposal facility, Chem. Eng. J., 157(1), 100-112. https://doi.org/10.1016/j.cej.2009.10.057
  22. Rengaraj, S., Kim, Y., Joo, C. K., Choi, K., Yi, J., 2004, Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resins: 1200H and IRN97H, Korean J. Chem. Eng., 21(1), 187-194. https://doi.org/10.1007/BF02705397
  23. Sole, K. C., Hiskey, J. B., 1995, Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301, Hydrometallurgy, 37(2), 129-147. https://doi.org/10.1016/0304-386X(94)00023-V
  24. Sugano, Y., Sahara, R., Murakami, T., Narushima, T., Iguchi, Y., Ouchi, C., 2005, Hydrothermal synthesis of zeolite A using blast furnace slag, ISIJ International, 45(6), 937-945. https://doi.org/10.2355/isijinternational.45.937
  25. Weber, W. J., Morris, J. C., 1963, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng, 89(17), 31-60.
  26. Yantasee, W., Lin, Y., Fryxell, G. E., Alford, K. L., Busche, B. J., Johnson, C. D., 2004, Selective removal of copper (II) from aqueous solutions using fine-grained activated carbon functionalized with amine, Ind. Eng. Chem. Res., 43(11), 2759-2764. https://doi.org/10.1021/ie030182g
  27. Yavuz, O., Altunkaynak, Y., Guzel, F., 2003, Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite, Water Res., 37(4), 948-952. https://doi.org/10.1016/S0043-1354(02)00409-8