DOI QR코드

DOI QR Code

The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

  • Choi, Junesang (Department of Mathematics, Dongguk University) ;
  • Parmar, Rakesh K. (Department of Mathematics, Government College of Engineering and Technology) ;
  • Srivastava, H.M. (Department of Mathematics and Statistics, University of Victoria)
  • Received : 2016.06.07
  • Accepted : 2016.12.06
  • Published : 2018.03.23

Abstract

Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions ${\gamma}^{(n)}_A$ and ${\Gamma}^{(n)}_A$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

Acknowledgement

Supported by : Dongguk University, Natural Sciences and Engineering Research Council of Canada

References

  1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Tenth Printing, National Bureau of Standards, Applied Mathematics Series 55, Washington, D.C., 1972; Reprinted by Dover Publications, New York, 1965.
  2. L. C. Andrews, Special functions for engineers and applied mathematicians, Macmillan Company, New York, 1985.
  3. A. Annamalai and C. Tellambura, Cauchy-Schwarz bound on the generalized Marcum Q-function with applications, WirZeless Commun. Mob. Comput., 1(2001), 243-253. https://doi.org/10.1002/wcm.15
  4. W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics 32, Stechert-Hafner, Inc., New York, 1964.
  5. B. C. Carlson, Special functions of applied mathematics, Academic Press, New York, San Francisco and London, 1977.
  6. A. Cetinkaya, The incomplete second Appell hypergeometric functions, Appl. Math. Comput., 219(2013), 8332-8337.
  7. M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159(2004), 589-602.
  8. M. A. Chaudhry and S. M. Zubair, On a class of incomplete gamma functions with applications, Chapman and Hall (CRC Press Company), Boca Raton, FL, 2002.
  9. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Vols. I, II, McGraw-Hill Book Company, New York, Toronto and London, 1953.
  10. A. A. Kilbas, H. M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies 204, Elsevier (North- Holland) Science Publishers, Amsterdam, London and New York, 2006.
  11. S.-D. Lin, H. M. Srivastava and J.-C. Yao, Some classes of generating relations associated with a family of the generalized Gauss type hypergeometric functions, Appl. Math. Inf. Sci. 9(2015), 1731-1738.
  12. Y. L. Luke, Mathematical functions and their approximations, Academic Press, New York, San Francisco and London, 1975.
  13. M.-J. Luo and R. K. Raina, Extended generalized hypergeometric functions and their applications, Bull. Math. Anal. Appl., 5(4)(2013), 65-77.
  14. W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Third Enlarged edition, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit beson- derer Berucksichtingung der Anwendungsgebiete, Bd. 5, Springer-Verlag, Berlin, Heidelberg and New York, 1966.
  15. J. I. Marcum, A statistical theory of target detection by pulsed radar, Trans. IRE, IT-6(1960), 59-267.
  16. K. B. Oldham, J. Myland and J. Spanier, An atlas of functions, With Equator, the atlas function calculator, Second edition, With 1 CD-ROM (Windows), Springer, New York, 2009.
  17. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of mathematical functions, [With 1 CD-ROM (Windows, Macintosh and UNIX)], US Department of Commerce, National Institute of Standards and Technology, Washington, D.C., 2010; Cambridge University Press, Cambridge, London and New York, 2010.
  18. E. Ozergin, M. A. Ozarslan and A. Altin, Extension of gamma, beta and hypergeo-metric functions, J. Comput. Appl. Math., 235(2011), 4601-4610. https://doi.org/10.1016/j.cam.2010.04.019
  19. P. A. Padmanabham and H. M. Srivastava, Summation formulas associated with the Lauricella function $F_A^{(r)} $, Appl. Math. Lett., 13(2000), 65-70.
  20. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and series, Vol.II, Gordon and Breach Science Publishers, New York, 1988.
  21. E. D. Rainville, Special functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
  22. M. K. Simon and M.-S. Alouini, Digital communication over fading channels: a unified approach to performance analysis, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 2000.
  23. L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, London and New York, 1966.
  24. H. M. Srivastava, On a summation formula for the Appell function $F_2$, Proc. Cambridge Philos. Soc., 63(1967), 1087-1089. https://doi.org/10.1017/S0305004100042146
  25. H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci., 5(2011), 390-444.
  26. R. Srivastava, Some properties of a family of incomplete hypergeometric functions, Russian J. Math. Phys., 20(2013), 121-128. https://doi.org/10.1134/S1061920813010111
  27. R. Srivastava, Some generalizations of Pochhammer's symbol and their associated families of hypergeometric functions and hypergeometric polynomials, Appl. Math. Inf. Sci., 7(2013), 2195-2206. https://doi.org/10.12785/amis/070609
  28. R. Srivastava, Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions, Appl. Math. Comput., 243(2014), 132-137.
  29. H. M. Srivastava, A. Cetinkaya and I. O. Kiymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226(2014), 484-491.
  30. H. M. Srivastava, M. A. Chaudhry and R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct., 23(2012), 659-683. https://doi.org/10.1080/10652469.2011.623350
  31. R. Srivastava and N. E. Cho, Generating functions for a certain class of incomplete hypergeometric polynomials, Appl. Math. Comput., 219(2012), 3219-3225.
  32. R. Srivastava and N. E. Cho, Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput., 234(2014), 277-285.
  33. H. M. Srivastava and J. Choi, Series associated with the zeta and related functions, Kluwer Acedemic Publishers, Dordrecht, Boston and London, 2001.
  34. H. M. Srivastava and J. Choi, Zeta and q-zeta functions and associated series and integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
  35. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
  36. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chich- ester, Brisbane and Toronto, 1984.
  37. N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1996.
  38. G. N. Watson, A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press, Cambridge, London and New York, 1944.
  39. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduc- tion to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth edition, Cambridge University Press, Cambridge, London and New York, 1963.