DOI QR코드

DOI QR Code

Performance of carbon fiber added to anodes of conductive cement-graphite pastes used in electrochemical chloride extraction in concretes

  • Pellegrini-Cervantes, M.J. (Facultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa) ;
  • Barrios-Durstewitz, C.P. (Facultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa) ;
  • Nunez-Jaquez, R.E. (Facultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa) ;
  • Baldenebro-Lopez, F.J. (Facultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa) ;
  • Corral-Higuera, R. (Facultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa) ;
  • Arredondo-Rea, S.P. (Facultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa) ;
  • Rodriguez-Rodriguez, M. (Facultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa) ;
  • Llanes-Cardenas, O. (Instituto Politecnico Nacional, Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (CIIDIR-IPN-Sinaloa)) ;
  • Beltran-Chacon, R. (Centro de Investigacion en Materiales Avanzados, Fisica de Materiales)
  • Received : 2017.09.30
  • Accepted : 2017.11.15
  • Published : 2018.04.30

Abstract

Pollution of chloride ion-reinforced concrete can trigger active corrosion processes that reduce the useful life of structures. Multifunctional materials used as a counter-electrode by electrochemical techniques have been used to rehabilitate contaminated concrete. Cement-based pastes added to carbonaceous material, fibers or dust, have been used as an anode in the non-destructive Electrochemical Chloride Extraction (ECE) technique. We studied the performance of the addition of Carbon Fiber (CF) in a cement-graphite powder base paste used as an anode in ECE of concretes contaminated with chlorides from the preparation of the mixture. The experimental parameters were: 2.3% of free chlorides, 21 days of ECE application, a Carbon Fiber Volume Fraction (CFVF) of 0.1, 0.3, 0.6, 0.9%, a lithium borate alkaline electrolyte, a current density of $4.0A/m^2$ and a cement/graphite ratio of 1.0 for the paste. The efficiency of the ECE in the traditional technique using metal mesh as an anode was 77.6% and for CFVF of 0.9% it was 90.4%, with a tendency to increase to higher percentages of the CFVF in the conductive cement-graphite paste, keeping the pH stable and achieving a homogeneous ECE in the mass of the concrete contaminated with chlorides.

Acknowledgement

Supported by : Universidad Autonoma de Sinaloa

References

  1. R. Munoz-Ledo, J. Uruchurtu-Chavarin. Caracterizacion de la agresividad atmosferica sobre los materiales metalicos estructurales en la zona metropolitana de la ciudad de Mexico. Revista Internacional de Contaminacion Ambiental UNAM, 18, 1 (2002).
  2. C. Christodoulou, F.M. Birmingham. Electrochemical treatments of corroded reinforcement in concrete. Loughborough University, EngD Thesis (2008).
  3. P. Garces. Durabilidad y caracteristicas resistentes de conglomerados cementicios conductores. 3er congreso nacional ALCONPAT (2008).
  4. D. Chung. Cement-based materials. CRC Press, U.S.A., (2003).
  5. H. Lim, S. Matitsine, G. Yeow-Beng, K. Ling-Bing. Conference "Electrical properties of graphite filled cement composites for device application". World scientific, Singapore (2007).
  6. A. Perez, M.A. Climent, P. Garces. Electrochemical extraction of chlorides from reinforced concrete using a conductive cement paste as the anode. Corrosion science, 52 (2010).
  7. A. Canon, P. Garces, M.A. Climent, J. Carmona, E. Zornoza. Feasibility of electrochemical chloride extraction from structural reinforced concrete using a sprayed conductive graphite powder-cement paste as anode. Corrosion Science, 77 (2013).
  8. J. Orlikowskia, S. Cebulskib, K. Darowickia. Electrochemical investigations of conductive coatings applied as anodes In cathodic protection of reinforced concrete. Cement & Concrete Composites. 26 (2004).
  9. P. Gu, P. Xie. Electrical percolation phenomena in cement composites containing conductive fibers. Journal of materials science, 31 (1996).
  10. S. Wen, D.D.L. Chung. Double percolation in the electrical conduction in carbon fiber reinforced cement-based materials. Carbon, 45 (2007).
  11. S. Wen, D.D.L. Chung. Cement-based controlled electrical resistivity materials. Journal of electronic materials, 30, 11 (2001). https://doi.org/10.1007/s11664-001-0208-7
  12. D. Chung. Electrically conductive cement-based materials. Advances in Cement Research, 16,4 (2004).
  13. Chung, D.D.L. Electrical conduction behavior of cement-matrix composites. Journal of materials engineering and performance, 11, 2 (2002).
  14. P.W. Chen, D.D.L. Chung. Carbon fiber reinforced concrete as an electrical contact material for smart structures. Smart mater structures, 2 (1993).
  15. Stratfull R.F. Experimental Cathodic Protection of a Bridge Deck. Transport Res. Rec. 500, U.S.A., (1974).
  16. M. J. Pellegrini Cervantes, C.P. Barrios Durstewitz1, R. E. Nunez Jaquez, F. Almeraya Calderon, M. Rodriguez Rodriguez, J.H. Castorena Gonzalez, E. Garces-Velazquez, E.E. Maldonado-Bandala, D. Nieves-Mendoza, J.P. Garcia-Contreras. Conductive Cement Pastes with Carbon Fibers as Anodes in the Electrochemical Chloride Extraction. Int. J. Electrochem. Sci., 37 (2015).
  17. Tiesong L., Dechang J., Peigang H., Meirong W., Defu L.Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Materials Science and Engineering: A, 497 (2008).
  18. Ohama Y., Demura K., Sumi K. Effect of humic acid on flexural behavior of carbon fiber-reinforced cement pastes. PRO 6: 3rd International RILEM Workshop on High Performance Fiber Reinforced Composites, RILEM (1999).
  19. Pu-Woei Chen and D D L Chung. Carbon fiber reinforced concrete as an electrical contact material for smart structures. Smart Mater. Struct., 2 (1993).
  20. D D L Chung. Review: Improving cement-based materials by using silica fume. Journal of materials science, 37 (2002).
  21. D. Chung, Electrically conductive cement-based materials. Advances in Cement Research, 16 (2004).
  22. NACE, I., 21113 NACE International standard. NACE SP0107-2007 (2007).
  23. J.C Orellan, G. Escadeillas, G. Arliguie. Electrochemical chloride extraction: efficiency and side effects. Cement and concrete research, 34 (2004).
  24. ASTM D 1411-99. Standard test methods for water-soluble chlorides present as admixtures in graded aggregate road mixes, ASTM International, USA, (1999).
  25. C 876-91 (Reapproved 1999), Standard test method for half-cell potentials of uncoated reinforcing steel in concrete, ASTM International, USA, (1999).
  26. J.C Orellan, G. Escadeillas, G. Arliguie. Electrochemical chloride extraction: efficiency and side effects. Cement and concrete research, 34 (2004).
  27. M. J. Sanchez , P. Garces, M.A. Climent. Electrochemical extraction of chlorides from reinforced concrete: variables affecting treatment efficiency. Materiales de Construccion, 56, 284 (2006).
  28. A. Toumi, R. Francois, O. Alvarado. Experimental and numerical study of electrochemical chloride removal from brick and concrete specimens. Cement and Concrete Research, 37 (2007).
  29. L. Rodrigo de Almeida Souza, M. H. Farias de Medeiros, E. Pereira, A. P. Brandao Capraro. Electrochemical chloride extraction: Efficiency and impact on concrete containing 1% of NaCl. Construction and Building Materials, 145 (2017).
  30. Y. Li, X. Liu, M. Wu, W. Bai. Research of electrochemical chloride extraction and reinforcement of concrete column using MPCbonded carbon fiber reinforced plastic sheet & mesh. Construction and Building Materials, 153 (2017).
  31. J. Hua Zhu, L. Wei, Z. Wang, C. Ke Liang, F. Xing. Application of carbon-fiber-reinforced polymer anode in electrochemical chloride extraction of steel-reinforced concrete. Construction and Building Materials, 120 (2016).
  32. J. Carmona, P. Garces, M.A. Climent. Efficiency of a conductive cement-based anodic system for the application of cathodic protection, cathodic prevention and electrochemical chloride extraction to control corrosion in reinforced concrete structures. Construction and Building Materials, 96 (2015).
  33. Manual de corrosion, evaluacion y diagnostico de corrosion en estructura de concreto armado,Cimite editorial, ISBN 980-292-541-3, (1997).