WENO methodology for UHD TV Image Quality Improvement

WENO 방법을 이용한 UHD TV 화질 개선

  • Yi, Dokkyun (Division of Mechanical Engineering, Daegu University) ;
  • Park, Jieun (Seong-san Liberal Arts College, Daegu University)
  • 이덕균 (대구대학교 공과대학 기계공학부) ;
  • 박지은 (대구대학교 인문교양대학)
  • Received : 2018.02.14
  • Accepted : 2018.04.20
  • Published : 2018.04.28


It has passed the era of Full High Definition Television (FHD) and ended the era of Ultra High Definition Television (UHD). We will talk about the problems caused by the difference in the number of pixels in the TVs and introduce a method to improve them. This method is a method of performing an interpolation method suitable for a given image with Weighted Essential Non-Oscillation (WENO). Thus, it is possible to reduce the distortion of the image and to ensure a better image quality. Therefore, if we use the WENO methodology, when we watch old video material on UHD TV, we can enjoy high definition of UHD TV without changing the number of pixels.


Supported by : National Research Foundation of Korea


  1. M. Sugawara, M. Kanazawa, K. Mitani & F. Okano. (2003. Oct). Ultrahigh-Definition Video System with 4000 Scanning Lines. SMPTE Motion Imaging Journal, 112, 339-346.
  2. T. Blu, P. Thevenaz & M. Unser. (2004). Linear interpolation revitalized. IEEE Trans. on Image Processing, 13(5), 710-719.
  3. R. G. Keys. (1981). Cubic convolution interpolation for digital image processing. IEEE Trans. on Acoust., Speech, Signal Process, ASSP-29(6), 1153-1160.
  4. W. C. Siu & K. W. Hung. (2012). Review of Image Interpolation and Super-resolution. IEEE conference.
  5. D. H. Han. (2016). Design and Characteristics of 6-60 Lens for CCTV. Journal of Convergence Society for SMB, 6(3), 85-91.
  6. N. Crouseilles, T. Respanud & E. Sonnendrucker. (2009). A Forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Computer Physics Communications, 180, 1730-1745.
  7. E. Sonnendrucker, J. Roche, P. Bertrand & A. Ghizzo. (1999). The semi-lagrangian method for the numerical resolution of the Vlasov equation. Journal of Computer Physics, 149, 201-220.
  8. A. Staniforth & J. Cote. (1991). Semi-Lagrangian integration schemes for atmospheric models. A review Mon. Weather Rev. 119, 2206-2223.<2206:SLISFA>2.0.CO;2
  9. M. Zerroukat, N. Wood & A. Staniforth. (2005). A monotonic and positive-definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme. Q. J. R. Meteorol. Soc. 131, 2923-2936.
  10. G.. S. Jiang & C.-W. Shu. (1996). Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126, 202-228.
  11. X. D. Liu, S. Osher & T. Chan. (1994). Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115, 200-212.
  12. S. J. Kim & D. E. Cho. (2018). Study on Learning Model for Effective Coding Education. Journal of the Korea Convergence Society, 9(2), 7-12.
  13. L. L. Takacs. (1985). A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Month Weather Rev, 113, 1050-1065.<1050:ATSSFT>2.0.CO;2
  14. J. A. Carrillo & F. Veci. (2007). Nonoscillatory interpolation methods applied to Vlasov-Based models. SIAM Journal on Scientific Computing, 29(3), 1179-1206.
  15. C. W. Shu. (2009). High order weighted essentially non-oscillatory schemes for convection dominated problems, SIAM Review, 51, 82-126.
  16. C. W. Shu & S. Osher. (1988). Efficient implementation of essentially non-oscillatory shock capturing schemes. Journal of Computational Physics, 77(2), 439-471.
  17. J. M. Qui & A. Christlieb. (2010). A Conservative high order semi-Lagrangian WENO method for the Vlasov equation, Journal of Computational Physics, 229, 1130-1149.
  18. D. K. Yi & J. E. Park. (2015). Comparative analysis methods for digital simulation. Journal of Digital Convergence, 13(9), 209-218.