DOI QR코드

DOI QR Code

Research for Solder Paste in Metallic Glass System for Thermoelectric Modules

고온열전모듈용 금속유리계 페이스트 연구

  • Seo, Seung-Ho (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Son, Geun Sik (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Seo, Kang Hyun (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Choi, Soon-Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 서승호 (한국기술교육대학교 에너지신소재공학과) ;
  • 손근식 (한국기술교육대학교 에너지신소재공학과) ;
  • 서강현 (한국기술교육대학교 에너지신소재공학과) ;
  • 최순목 (한국기술교육대학교 에너지신소재공학과)
  • Received : 2017.09.06
  • Accepted : 2018.02.05
  • Published : 2018.05.01

Abstract

We researched about a bulk metallic glass system as an additive to an Ag paste for high temperature thermoelectric modules. Bulk metallic glass (BMG) ribbons were produced by using a rapid solidification process (RSP) under a cooling rate condition higher than $10^{\circ}C/sec$. We investigated BMG characteristics of the ribbons by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC) in order to evaluate the glass transition temperature ($T_g$) and the recrystallization temperature ($T_x$) lower than $400^{\circ}C$. A milling process was also developed to apply the BMG ribbons to a commercial Al paste as an additive for lower sintering temperature.

Acknowledgement

Supported by : 한국기술교육대학교

References

  1. Z. G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, Prog. Nat. Sci.: Mater. Int., 22, 535 (2012). [DOI: https://doi.org/10.1016/j.pnsc.2012.11.011] https://doi.org/10.1016/j.pnsc.2012.11.011
  2. K. Shenai, M. Dudley, and R. F. Davis, ECS J. Solid State Sci. Technol., 2, N3055 (2013). [DOI: https://doi.org/10.1149/2.012308jss] https://doi.org/10.1149/2.012308jss
  3. V. Chidambaram, J. Hattel, and J. Hald, Microelectron. Eng., 88, 981 (2011). [DOI: https://doi.org/10.1016/j.mee.2010.12.072] https://doi.org/10.1016/j.mee.2010.12.072
  4. M. Li, Z. Li, Y. Xiao, and C. Wang, Appl. Phys. Lett., 102, 094104 (2013). [DOI: https://doi.org/10.1063/1.4794684] https://doi.org/10.1063/1.4794684
  5. K. S. Siow, J. Alloys Compd., 514, 6 (2012). [DOI: https://doi.org/10.1016/j.jallcom.2011.10.092] https://doi.org/10.1016/j.jallcom.2011.10.092
  6. K. S. Siow, J. Electron. Mater., 43, 947 (2014). [DOI: https://doi.org/10.1007/s11664-013-2967-3] https://doi.org/10.1007/s11664-013-2967-3
  7. H. Schwarzbauer and R. Kuhnert, IIEEE Trans. Ind. Appl., 27, 93 (1991). [DOI: https://doi.org/10.1109/28.67536] https://doi.org/10.1109/28.67536
  8. R. Kajiwara, S. Motowaki, K. Ito, T. Ishii, K. Arai. T. Nakajo, and H. Kagii, Renesas Technology Corp, US2010/0195292 A1 (2010).
  9. K. Suganuma, S. J. Kim, and K. S. Kim, JOM, 61, 64 (2009). [DOI: https://doi.org/10.1007/s11837-009-0013-y]
  10. G. L. Allen, R. A. Bayles, W. W. Gile, and W. A. Jesser, Thin Solid Films, 144, 297 (1986). [DOI: https://doi.org/10.1016/0040-6090(86)90422-0] https://doi.org/10.1016/0040-6090(86)90422-0
  11. P. R. Couchman and W. A. Jesser, Nature, 269, 481 (1977). [DOI: https://doi.org/10.1038/269481a0] https://doi.org/10.1038/269481a0
  12. H. Schwarzbauer, Siemens, US5058796, USA (1991).
  13. H. Hozoji, T. Morita, and H. Sasaki, Hitachi, US7393771B2, USA (2008).
  14. A. Hu, J. Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C. X. Xu, Appl. Phys. Lett., 97, 153117 (2010). [DOI: https://doi.org/10.1063/1.3502604] https://doi.org/10.1063/1.3502604
  15. W. Schmitt, T. Dickel, and K. Stenger, Heraeus, US2009/0134206A1, Germany (2009).
  16. K. Yamakawa and K. Mine, Nihon Handa, US7766218 (2010).
  17. M. Kuramoto, S. Ogawa, M. Niwa, K. S. Kim, and K. Suganuma, IEEE Trans. Compon. Packag. Technol., 33, 801 (2010). [DOI: https://doi.org/10.1109/tcapt.2010.2064313] https://doi.org/10.1109/TCAPT.2010.2064313
  18. I. J. Rasiah, Honeywell International, US7083850B2, USA (2006).
  19. J. Yan, G. Zou, A. P. Wu, J. Ren, J. Yan, A. Hu, and Y. Zhou, Scripta Mater., 66, 582 (2012). [DOI: https://doi.org/10.1016/j.criptamat.2012.01.007] https://doi.org/10.1016/j.scriptamat.2012.01.007
  20. S. Egelkraut, L. Frey, M. Knoerr, and A. Schletz, Proc. 2010 12th Electronics Packaging Technology Conference (IEEE, Singapore, 2010), p. 660.
  21. H. S. Chen, Rep. Prog. Phys., 43, 353 (1980). [DOI: https://doi.org/10.1088/0034-4885/43/4/001] https://doi.org/10.1088/0034-4885/43/4/001
  22. A. J. Drehman, A. L. Greer, and D. Turnbull, Appl. Phys. Lett., 41, 716 (1982). [DOI: https://doi.org/10.1063/1.93645] https://doi.org/10.1063/1.93645
  23. K. H. Park, S. W. You, S. C. Ur, I. H. Kim, S. M. Choi, and W. S. Seo, J. Electron. Mater., 41, 1051 (2012). [DOI: https://doi.org/10.1007/s11664-011-1889-1] https://doi.org/10.1007/s11664-011-1889-1
  24. K. H. Park, W. S. Seo, S. M. Choi, and I. H. Kim, J. Korean Phys. Soc., 64, 79 (2014). [DOI: https://doi.org/10.3938/jkps.64.79] https://doi.org/10.3938/jkps.64.79
  25. S. Y. Kim, S. J. Kim, S. S. Jee, J. M. Park, K. H. Park, S. C. Park, E. A Cho, J. H. Lee, I. Y. Song, S. M. Lee, I. T. Han, K. R. Lim, W. T. Kim, J. C. Park, J. Eckert, D. H. Kim, and E. S. Lee, Sci. Rep., 3, 2185 (2013). [DOI: https://doi.org/10.1038/srep02185] https://doi.org/10.1038/srep02185