DOI QR코드

DOI QR Code

Structural and Electrical Properties of Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) BiFeO3 Thin Films by Chemical Solution Deposition

화학 용액 증착법으로 제조한 Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) 박막의 구조와 전기적 특성

  • 김윤장 (청운대학교 전자공학과) ;
  • 김진원 ((주) 아이비머티리얼즈) ;
  • 장성근 (청운대학교 전자공학과)
  • Received : 2018.01.13
  • Accepted : 2018.02.13
  • Published : 2018.05.01

Abstract

Pure $BiFeO_3$ (BFO) and codoped $Bi_{0.9}A_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (A=Eu, Dy) thin films were prepared on Pt(111)/Ti/$SiO_2$/Si(100) substrates by chemical solution deposition. The remnant polarizations (2Pr) of the $Bi_{0.9}Eu_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (BEFZO) and $Bi_{0.9}Dy_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (BDFZO) thin films were about 36 and $26{\mu}C/cm^2$ at the maximum electric fields of 900 and 917 kV/cm, respectively, at 1 kHz. The codoped BEFZO and BDFZO thin films showed improved electrical properties, and leakage current densities of 3.68 and $1.21{\times}10^{-6}A/cm^2$, respectively, which were three orders of magnitude lower than that of the pure BFO film, at 100 kV/cm.

Acknowledgement

Supported by : 청운대학교

References

  1. W. Prellier, M. P. Singh, and P. Murugavel, J. Phys.: Condens. Matter., 17, R803 (2005). [DOI: https://doi.org/10.1088/0953-8984/17/30/R01] https://doi.org/10.1088/0953-8984/17/30/R01
  2. S. M. Selbach, T. Tybell, M. A. Einarsrud, and T. Grande, Adv. Mater., 20, 3692 (2008). [DOI: https://doi.org/10.1002/adma.200800218] https://doi.org/10.1002/adma.200800218
  3. T. Zhao, A. Scholl. F. Zavaliche. K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mater., 5, 823 (2006). [DOI: https://doi.org/10.1038/nmat1731] https://doi.org/10.1038/nmat1731
  4. L. W. Martin, Y. H. Chu, and R. Ramesh, Mater. Sci. Eng., 68, 89 (2010). [DOI: https://doi.org/10.1016/j.mser.2010.03.001] https://doi.org/10.1016/j.mser.2010.03.001
  5. D. K. Pradhan, R.N.P. Choudhary, C. Rinaldi, and R. S. Katiyar, J. Appl. Phys., 106, 024102 (2009). [DOI: https://doi.org/10.1063/1.3158121] https://doi.org/10.1063/1.3158121
  6. Z. Hu, M. Li, B. Yu, L. Pei, J. Liu, J. Wang, and X. Zhao, J. Phys. D: Appl. Phys., 42, 185010 (2009). [DOI: https://doi.org/10.1088/0022-3727/42/18/185010] https://doi.org/10.1088/0022-3727/42/18/185010
  7. B. Yu, M. Li, J. Liu, D. Guo, L. Pei, and X. Zhao, J. Phys. D: Appl. Phys., 41, 065003 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/6/065003] https://doi.org/10.1088/0022-3727/41/6/065003
  8. B. Yu, M. Li, J. Wang, L. Pei, D. Guo, and X. Zhao, J. Phys. D: Apply. Phys., 41, 185401 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/18/185401] https://doi.org/10.1088/0022-3727/41/18/185401
  9. T. Kawae, H. Tsuda, H. Naganuma, S. Yamada, M. Kumeda, S. Okamura, and A. Morimoto, Jpn. J. Appl. Phys., 47, 7586 (2008). [DOI: https://doi.org/10.1143/jjap.47.7586] https://doi.org/10.1143/JJAP.47.7586
  10. X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett., 86, 062903 (2005). [DOI: https://doi.org/10.1063/1.1862336] https://doi.org/10.1063/1.1862336
  11. R. D. Shannon, Acta Crystallogr., Sect. A: Found. Adv., A32, 751 (1976). [DOI: https://doi.org/10.1107/s0567739476001551]
  12. Y. J. Kim, J. W. Kim. H. J. Kim, and S. S. Kim, J. Korean Phys. Soc., 62, 1019 (2013). [DOI: https://doi.org/10.3938/jkps.62.1019] https://doi.org/10.3938/jkps.62.1019
  13. C. M. Raghavan, J. W. Kim, and S. S. Kim, Ceram. Int., 40, 2281 (2014). [DOI: https://doi.org/10.1016/j.ceramint.2013.07.148] https://doi.org/10.1016/j.ceramint.2013.07.148
  14. I. Vrejoiu, G. L. Rhun, L. Pintilie, D. Hesse, M. Alexe, and U. Gosele, Adv. Mater., 18, 1657 (2006). [DOI: https://doi.org/10.1002/adma.200502711] https://doi.org/10.1002/adma.200502711
  15. Z. Zhong and H. Ishiwara, Appl. Phys. Lett., 95, 112902 (2009). [DOI: https://doi.org/10.1063/1.3231073] https://doi.org/10.1063/1.3231073