DOI QR코드

DOI QR Code

The Effect of Electron Beam Irradiation and Ag Buffer Layer on the Structural, Optical, and Electrical Properties of ZnO/Ag Thin Films

전자빔 조사 및 Ag 완충층에 의한 ZnO/Ag 박막의 구조적·광학적·전기적 특성 개선 효과

  • Choi, Jin-Young (School of Materials Science and Engineering, University of Ulsan) ;
  • Eom, Tae-Young (School of Materials Science and Engineering, University of Ulsan) ;
  • Park, Yun-Je (School of Materials Science and Engineering, University of Ulsan) ;
  • Choi, Su-Hyun (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Dae-Hyun (Poongsan Holdings) ;
  • Cho, Yun-Ju (Poongsan Holdings) ;
  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
  • 최진영 (울산대학교 첨단소재공학부) ;
  • 엄태영 (울산대학교 첨단소재공학부) ;
  • 박윤제 (울산대학교 첨단소재공학부) ;
  • 최수현 (울산대학교 첨단소재공학부) ;
  • 김대현 ((주)풍산홀딩스 기술연구소) ;
  • 조윤주 ((주)풍산홀딩스 기술연구소) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Received : 2018.01.18
  • Accepted : 2018.01.31
  • Published : 2018.05.01

Abstract

In this work, in order to effectively improve the electrical conductivity and visible light transmittance of ZnO thin films, ZnO single layer and ZnO/Ag bi-layer films were deposited on glass substrates by radio frequency and direct current magnetron sputtering, and then, the effects of an Ag buffer layer and electron beam irradiation on the electrical and optical properties of the films were investigated. The observed results indicate that ZnO 100 nm / Ag 7 nm films show higher opto-electrical performance than the ZnO single layer film. In addition, electron beam irradiation also effectively enhanced the visible transmittance and electrical conductivity of the ZnO/Ag bi-layer films.

Acknowledgement

Grant : 나노 마이크로 복합구조물을 이용한 터치스크린용 메탈 메쉬 투명 전극 개발

Supported by : 한국산업기술진흥원

References

  1. Z. Z. You and G. J. Hua. J. Alloys Compd., 530, 11 (2012). [DOI: https://doi.org/10.1016/j.jallcom.2012.03.078] https://doi.org/10.1016/j.jallcom.2012.03.078
  2. J. I. Nomoto, M. Konagai, K. Okada, T. Ito, T. Miyata, and T. Minami, Thin Solid Films, 518, 2937 (2010). [DOI: https://doi.org/10.1016/j.tsf.2009.10.134] https://doi.org/10.1016/j.tsf.2009.10.134
  3. Y. S. Kim, J. H. Park, and D. Kim, Vacuum, 82, 574 (2008). [DOI: https://doi.org/10.1016/j.vacuum.2007.08.011] https://doi.org/10.1016/j.vacuum.2007.08.011
  4. H. W. Wu and C. H. Chu, Mater. Lett., 105, 65 (2013). [DOI: https://doi.org/10.1016/j.matlet.2013.04.017] https://doi.org/10.1016/j.matlet.2013.04.017
  5. J. H. Park, J. H. Chae, and D. Kim, J. Alloys Compd., 478, 330 (2009). [DOI: https://doi.org/10.1016/j.jallcom.2008.11.065] https://doi.org/10.1016/j.jallcom.2008.11.065
  6. D. Kim, Renewable Energy, 36, 525 (2011). [DOI: https://doi.org/10.1016/j.renene.2010.06.031] https://doi.org/10.1016/j.renene.2010.06.031
  7. S. Y. Kim, J. H. Jeon, T. K. Gong, S. K. Kim, D. H. Choi, D. I. Son, and D. Kim, J. Kor. Soc. Heat Treat., 28, 63 (2015). [DOI: https://doi.org/10.12656/jksht.2015.28.2.63] https://doi.org/10.12656/jksht.2015.28.2.63
  8. Y. H. Song, T. Y. Eom, J. Y. Cheon, B. C. Cha, D. H. Choi, D. I. Son, and D. Kim, J. Korean. Soc. Heat Treat., 30, 113 (2017). [DOI: https://doi.org/10.12656/jksht.2017.30.3.113]
  9. G. Haacke, J. Appl. Phys., 47, 4086 (1976). [DOI: https://doi.org/10.1063/1.323240] https://doi.org/10.1063/1.323240
  10. S. H. Kim, S. K. Kim, S. Y. Kim, S. B. Heo, D. H. Choi, D. I. Son, and D. Kim, J. Korean. Soc. Heat Treat., 26, 288 (2013). [DOI: https://doi.org/10.12656/jksht.2013.26.6.288] https://doi.org/10.12656/jksht.2013.26.6.288
  11. J. H. Jeon, T. K. Gong, S. K. Kim, S. H. Kim, S. Y. Kim, D. H. Choi, D. I. Son, and D. Kim, J. Alloy. Compd., 639, 1 (2015). [DOI: https://doi.org/10.1016/j.jallcom.2015.02.123] https://doi.org/10.1016/j.jallcom.2015.02.123
  12. D. Kim, Ceram. Int., 40, 1457 (2014). [DOI: https://doi.org/10.1016/j.ceramint.2013.07.029] https://doi.org/10.1016/j.ceramint.2013.07.029