DOI QR코드

DOI QR Code

Piezoelectric Properties of 0.65Pb(Zr1-xTix)O3-0.35Pb(Zn1/6Ni1/6Nb2/3)O3 Ceramics and Their Application to Piezoelectric Energy Harvester

0.65Pb(Zr1-xTix)O3-0.35Pb(Zn1/6Ni1/6Nb2/3)O3 세라믹의 압전 특성 및 압전 에너지 하베스터 적용

  • Jo, Sora (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Kim, Daesu (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Cho, Yuri (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Son, Sin Joong (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Kang, Hyung-Won (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University) ;
  • Han, Seung Ho (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute)
  • 조소라 (전자부품연구원 융복합전자소재연구센터) ;
  • 김대수 (전자부품연구원 융복합전자소재연구센터) ;
  • 조유리 (전자부품연구원 융복합전자소재연구센터) ;
  • 손신중 (전자부품연구원 융복합전자소재연구센터) ;
  • 강형원 (전자부품연구원 융복합전자소재연구센터) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 한승호 (전자부품연구원 융복합전자소재연구센터)
  • Received : 2018.02.12
  • Accepted : 2018.02.28
  • Published : 2018.05.01

Abstract

The piezoelectric properties of $0.65Pb(Zr_{1-x}Ti_x)O_3-0.35Pb(Zn_{1/6}Ni_{1/6}Nb_{2/3})O_3$ ($PZT_x-PZNN$) ceramics with $0.530{\leq}x{\leq}0.555$ were investigated for application to piezoelectric energy harvesters. Although a morphotropic phase boundary (MPB) was found at approximately x = 0.545, the ceramic with the highest figure of merit (FOM) ($d_{33}{\times}g_{33}$) was observed at a composition of x = 0.540. Values of this figure of merit, $d_{33}{\times}g_{33}$, of $19.6pm^2/N$ and $20.2pm^2/N$ were obtained from $PZT_{0.540}-PZNN$ ceramics sintered at $920^{\circ}C$ and $950^{\circ}C$, respectively. A high output power of $937{\mu}W$ and a high power density of $3.3mW/cm^3$ were obtained from unimorph-type piezoelectric energy harvesters fabricated using $PZT_{0.540}-PZNN$ ceramic sintered at $920^{\circ}C$ for 4h.

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. S. Priya, IEEE Trans. Ultrason. Eng., 57, 2610 (2010). [DOI: https://doi.org/10.1109/TUFFC.2010.1734] https://doi.org/10.1109/TUFFC.2010.1734
  2. I. T. Seo, Y. J. Cha, I. Y. Kang, J. H. Choi, S. Nahm, T. H. Seung, and J. H. Paik, J. Am. Ceram. Soc., 94, 3629 (2011). [DOI: https://doi.org/10.1111/j.1551-2916.2011.04817.x] https://doi.org/10.1111/j.1551-2916.2011.04817.x
  3. R. A. Islam and S. Priya, J. Am. Ceram. Soc., 89, 3147 (2006). [DOI: https://doi.org/10.1111/j.1551-2916.2006.01205.x] https://doi.org/10.1111/j.1551-2916.2006.01205.x
  4. Y. J. Cha, I. T. Seo, I. Y. Kang, S. B. Shin, J. H. Choi, S. Nahm, T. H. Seung, and J. H. Paik, J. Appl. Phys., 110, 084111 (2011). [DOI: https://doi.org/10.1063/1.3653274] https://doi.org/10.1063/1.3653274
  5. R. A. Islam and S. Priya, Appl. Phys. Lett., 88, 032903 (2006). [DOI: https://doi.org/10.1063/1.2166201] https://doi.org/10.1063/1.2166201
  6. C. H. Choi, I. T. Seo, D. Song, M. S. Jang, B. Y. Kim, S. Nahm, T. H. Sung, and H. C. Song, J. Eur. Ceram. Soc., 33, 1343 (2013). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2012.12.011] https://doi.org/10.1016/j.jeurceramsoc.2012.12.011
  7. T. G. Lee, H. J. Lee, S. W. Kim, D. H. Kim, S. H. Han, H. W. Kang, C. Y. Kang, and S. Nahm, J. Eur. Ceram. Soc., 37, 3935 (2017). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.05.029] https://doi.org/10.1016/j.jeurceramsoc.2017.05.029
  8. C. J. Jeon, H. N. Hwang, Y. H. Jeong, J. S. Yun, J. H. Nam, J. H. Cho, J. H. Paik, J. B. Lim, S. Nahm, and E. S. Kim, J. Korean Phys. Soc., 63, 1772 (2013). [DOI: https://doi.org/10.3938/jkps.63.1772] https://doi.org/10.3938/jkps.63.1772
  9. T. G. Lee, H. J. Lee, D. H. Kim, H. B. Xu, S. J. Park, J. S. Park, S. Nahm, C. Y. Yoon, and S. J. Yoon, J. Eur. Ceram. Soc., 36, 4049 (2016). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2016.07.014] https://doi.org/10.1016/j.jeurceramsoc.2016.07.014
  10. C. W. Ahn, S. Y. Noh, S. Nahm, J. Ryu, K. Uchino, S. J. Yoon, and J. S. Song, Jpn. J. Appl. Phys., 42, 5676 (2003). [DOI: https://doi.org/10.1143/JJAP.42.5676] https://doi.org/10.1143/JJAP.42.5676
  11. C. H. Nam, H. Y. Park, I. T. Seo, J. H. Choi, M. R. Joung, S. Nahm, H. J. Lee, Y. H. Kim, and T. H. Sung, J. Am. Ceram. Soc., 94, 3442 (2011). [DOI: https://doi.org/10.1111/j.1551-2916.2011.04538.x] https://doi.org/10.1111/j.1551-2916.2011.04538.x
  12. S. Mahajan, C. Prakash, and O. P. Thakur, J. Alloys Compd., 471, 507 (2009). [DOI: https://doi.org/10.1016/j.jallcom.2008.04.046] https://doi.org/10.1016/j.jallcom.2008.04.046