The Effects of Lithium-Incorporated on N-ZTO/P-SiC Heterojunction Diodes by Using a Solution Process

용액공정으로 제작한 리튬 도핑된 N-ZTO/P-SiC 이종접합 구조의 전기적 특성

  • Lee, Hyun-Soo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Park, Sung-Joon (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • An, Jae-In (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Cho, Seulki (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이현수 (광운대학교 전자재료공학과) ;
  • 박성준 (광운대학교 전자재료공학과) ;
  • 안재인 (광운대학교 전자재료공학과) ;
  • 조슬기 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2018.01.10
  • Accepted : 2018.02.21
  • Published : 2018.05.01


In this work, we investigate the effects of lithium doping on the electric performance of solution-processed n-type zinc tin oxide (ZTO)/p-type silicon carbide (SiC) heterojunction diode structures. The proper amount of lithium doping not only affects the carrier concentration and interface quality but also influences the temperature sensitivity of the series resistance and activation energy. We confirmed that the device characteristics vary with lithium doping at concentrations of 0, 10, and 20 wt%. In particular, the highest rectification ratio of $1.89{\times}107$ and the lowest trap density of $4.829{\times}1,022cm^{-2}$ were observed at 20 wt% of lithium doping. Devices at this doping level showed the best characteristics. As the temperature was increased, the series resistance value decreased. Additionally, the activation energy was observed to change with respect to the component acting on the trap. We have demonstrated that lithium doping is an effective way to obtain a higher performance ZTO-based diode.


Supported by : 한국전기연구원, 한국연구재단, 한전 기초전력연구원, 한국산업기술평가관리원(KEIT)


  1. S. C. Siah, S. W. Lee, Y. S. Lee, J. Heo, T. Shibata, C. U. Segre, R. G. Gordon, and T. Buonassisi, Appl. Phys. Lett., 104, 242113 (2014). [DOI:]
  2. P. K. Nayak, J. Jang, C. Lee, and Y. Hong, Appl. Phys. Lett., 95, 193503 (2009). [DOI:]
  3. R. Vidya, P. Ravindran, and H. Fjellvag, Appl. Phys. Lett., 111, 123713 (2012). [DOI:]
  4. C. S. Fuh, P. T. Liu, W. H. Huang, and S. M. Sze, IEEE Electron Device Lett., 35, 1103 (2014). [DOI:]
  5. K. H. Lim, K. Kim, S. Kim, S. Y. Park, H. Kim, and Y. S. Kim, Adv. Mater., 25, 2994 (2013). [DOI:]
  6. M. Caglar, Y. Caglar, S. Aksoy, and S. Ilican, Appl. Surf. Sci., 256, 4966 (2010). [DOI:]
  7. X. Sun, C. Zhou, M. Xie, H. Sun, T. Hu, F. Lu, S. M. Scott, S. M. Georgec, and J. Lian, J. Mater. Chem. A, 2, 7319 (2014). [DOI:]
  8. M. Guziewicz, R. Schifano, E. Przezdziecka, J. Z. Domagala, W. Jung, T. A. Krajewski, and E. Guziewicz, Appl. Phys. Lett., 107, 101105 (2015). [DOI:]
  9. A. Taube, M. Sochacki, N. Kwietniewski, A. Werbowy, S. Gieraltowska, L. Wachnicki, M. Godlewski, and J. Szmidt, Appl. Phys. Lett., 110, 143509 (2017). [DOI:]
  10. J. F. Felix, M. Aziz, C.I.L. de Araujo, W. M. de Azevedo, V. Anjos, E. F. da Silva Jr, and M. Henini, Semicond. Sci. Technol., 29, 045021 (2014). [DOI:]
  11. K. Javaid, Y. F. Xie, H. Luo, M. Wang, H. L. Zhang, J. H. Gao, F. Zhuge, L. Y. Liang, and H. T. Cao, Appl. Phys. Lett., 109, 123507 (2016). [DOI:]
  12. L. Fanni, B. A. Aebersold, D.T.L. Alexander, L. Ding, M. Morales-Masis, S. Nicolay, and C. Ballif, Thin Solid Films, 565, 1 (2014). [DOI:]
  13. G. Li, L. Yu, B. M. Hudak, Y. J. Chang, H. Baek, A. Sundararajan, D. R. Strachan, G. C. Yi, and B. S. Guiton, Mater. Res. Express, 3, 054001 (2016). [DOI:]
  14. J. A. Lee, Y. E. Lee, H. C. Lee, Y. W. Heo, J. H. Lee, and J. J. Kim, Ceram. Int., 42, 11170 (2016). [DOI:]
  15. D. Wan, X. Liu, L. Xu, C. Liu, X. Xiao, S. Guo, and L. Liao, IEEE Electron Device Lett., 37, 50 (2016). [DOI:]
  16. M. Jang, Y. Kim, J. Shin, and S. Lee, IEEE Electron Device Lett., 26, 354 (2005). [DOI:]