DOI QR코드

DOI QR Code

Fraunhofer Diffraction Pattern of a Periodic Hologram When the Input Beam Size is Similar to the Period of the Hologram

주기적인 홀로그램에 입사하는 레이저빔의 크기가 주기와 유사할 때의 프라운호퍼 회절 패턴에 대한 연구

  • Go, Chun Soo (Division of Microelectronics and Display Technology, Wonkwang University) ;
  • Lim, Sungwoo (Division of Microelectronics and Display Technology, Wonkwang University) ;
  • Oh, Yong Ho (Division of Microelectronics and Display Technology, Wonkwang University)
  • 고춘수 (원광대학교 반도체.디스플레이학부) ;
  • 임성우 (원광대학교 반도체.디스플레이학부) ;
  • 오용호 (원광대학교 반도체.디스플레이학부)
  • Received : 2018.01.08
  • Accepted : 2018.02.21
  • Published : 2018.05.01

Abstract

The ratio of the period of a diffractive element to the input beam size is a critical parameter in a diffractive beam shaper. We measured and calculated the Fraunhofer diffraction patterns of a periodic hologram with an input beam size similar to the period of the hologram. The measured intensities show very complicated patterns and are strongly dependent upon the center position of the laser beam relative to the hologram. Using a diffraction formula for a periodic hologram, we calculated the diffracted light intensities and fit them to the measured ones. The measured and calculated intensities are in good agreement even when the beam diameter of the incident laser is similar to the period of the hologram. We can therefore use this formula to estimate the output of a periodic beam shaper even under such an extreme condition.

Acknowledgement

Supported by : 원광대학교

References

  1. G. Raciukaitis, E. Stankevicius, P. Gecys, M. Gedvilas, C. Bischoff, E. Jager, U. Umhofer, and F. Volklein, J. Laser Micro/Nanoeng., 6, 37 (2011). [DOI: https://doi.org/10.2961/jlmn.2011.01.0009] https://doi.org/10.2961/jlmn.2011.01.0009
  2. D. A. Grewell and A. Benatar, Opt. Eng., 46, 118001 (2007). [DOI: https://doi.org/10.1117/1.2802588] https://doi.org/10.1117/1.2802588
  3. K. Fuse, J. Laser Micro/Nanoeng., 5, 156 (2010). [DOI: https://doi.org/10.2961/jlmn.2010.02.0011] https://doi.org/10.2961/jlmn.2010.02.0011
  4. J. J. Yang and M. R. Wang, Opt. Eng., 42, 3106 (2003). [DOI: https://doi.org/10.1117/1.1617310] https://doi.org/10.1117/1.1617310
  5. O. Ripoll, V. Kettunen, and H. P. Herzig, Opt. Eng., 43, 2549 (2004). [DOI: https://doi.org/10.1117/1.1804543] https://doi.org/10.1117/1.1804543
  6. T. Hirai, K. Fuse, K. Kurisu, and K. Ebata, SEI Tech. Rev., 60, 17 (2005).
  7. C. S. Go, Y. H. Oh, and S. W. Lim, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 578 (2011). [DOI: https://doi.org/10.4313/JKEM.2011.24.7.578]
  8. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, Englewood, 2005) p. 108.
  9. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (John Wiley & Sons, New York, 1978) p. 279.