Topology optimization of steel plate shear walls in the moment frames

• Haghollahi, Abbas (Faculty of Civil Engineering, Shahid Rajaee Teacher Training University)
• Accepted : 2018.12.28
• Published : 2018.12.25
• 1,317 100

Abstract

In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.

Keywords

topology optimization;steel plate shear wall;moment frame;sensitivity-based method;method of moving asymptotes;SIMP method;perforated plate

References

1. ABAQUS (2014), Analysis User's Manual, V.6-14, Dassault Systemes Simulia, Providence, RI, USA.
2. AISC360 (2010), Specification for Structural Steel Buildings, American Institute of Steel Constructions, Chicago, IL, USA.
3. Alavi, E. and Nateghi, F. (2013), "Experimental study on diagonally stiffened steel plate shear walls with central perforation", J. Constr. Steel Res., 89, 9-20. https://doi.org/10.1016/j.jcsr.2013.06.005
4. ATC24 (1992), Guidelines for cyclic seismic testing of components of steel structures for buildings, Applied Technology Council, Redwood City, CA, USA.
5. Banh, T.T., Shin, S. and Lee, D. (2018), "Topology optimization for thin plate on elastic foundations by using multi-material", Steel Compos. Struct., Int. J., 27(2), 177-184.
6. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
7. Bendsoe, M. and Sigmund, O. (2003), Topology Optimization: Theory, Methods, and Applications, Springer-Verlag Berlin Heidelberg, New York, NY, USA.
8. Bhowmick, A.K., Grondin, G.Y. and Driver, R.G. (2014), "Nonlinear seismic analysis of perforated steel plate shear walls", J. Constr. Steel Res., 94, 103-113. https://doi.org/10.1016/j.jcsr.2013.11.006
9. Chan, R., Albermani, F. and Kitipornchai, S. (2011), "Stiffness and strength of perforated steel plate shear wall", Proced. Eng., 14, 675-679. https://doi.org/10.1016/j.proeng.2011.07.086
10. Das, R., Jones, R. and Xie, Y.M. (2011), "Optimal topology design of industrial structures using an evolutionary algorithm", Optim. Eng., 12(4), 681-717. https://doi.org/10.1007/s11081-010-9132-0
11. Dehghani, M., Mashayekhi, M. and Salajegheh, E. (2016), "Topology optimization of double-and triple-layer grids using a hybrid methodology", Eng. Optim., 48(8), 1333-1349. https://doi.org/10.1080/0305215X.2015.1105968
12. FEMA450 (2003), NEHRP Recommended Provisions and Commentary for Seismic Regulations for New Buildings and Other Structures, Federal Emergency Management Agency, Washington, D.C., USA.
13. Formisano, A., Lombardi, L. and Mazzolani, F.M. (2016), "Perforated metal shear panels as bracing devices of seismicresistant structures", J. Constr. Steel Res., 126, 37-49. https://doi.org/10.1016/j.jcsr.2016.07.006
14. Gharehbaghi, S., Moustafa, A. and Salajegheh, E. (2016), "Optimum seismic design of reinforced concrete frame structures", Comput. Concr., Int. J., 17(6), 761-786. https://doi.org/10.12989/cac.2016.17.6.761
15. Gholizadeh, S. and Barati, H. (2014), "Topology optimization of nonlinear single layer domes by a new metaheuristic", Steel Compos. Struct., Int. J., 16(6), 681-701. https://doi.org/10.12989/scs.2014.16.6.681
16. Jansseune, A. and Corte, W.D. (2017), "The influence of convoy loading on the optimized topology of railway bridges", Struct. Eng. Mech., Int. J., 64(1), 45-58.
17. Kabus, S. and Pedersen, C.B.W. (2012), "Optimal Bearing Housing Designing Using Topology Optimization", J. Tribol., 134(2), 1-9.
18. Khatibinia, M., Roodsarabi, M. and Barati, M. (2018), "Topology optimization of plane structures using binary level set method and isogeometric analysis", Int. J. Optim. Civil Eng., 8(2), 209-226.
19. Kutuk, M.A. and Gov, I. (2014), "Optimum bracing design under wind load by using topology optimization", Wind Struct., Int. J., 51(1), 39-66.
20. Kutylowski, R. and Rasiak, B. (2014), "Application of topology optimization to bridge girder design", Struct. Eng. Mech., Int. J., 51(1), 39-66. https://doi.org/10.12989/sem.2014.51.1.039
21. Lee, D., Shin, S., Lee, J. and Lee, K. (2015), "Layout evaluation of building outrigger truss by using material topology optimization", Steel Compos. Struct., Int. J., 19(2), 263-275. https://doi.org/10.12989/scs.2015.19.2.263
22. Lu, X., Xu, J., Zhang, H. and Wei, P. (2017), "Topology optimization of the photovoltaic panel connector in high-rise buildings", Struct. Eng. Mech., Int. J., 62(4), 465-475. https://doi.org/10.12989/sem.2017.62.4.465
23. Mashayekhi, M., Salajegheh, E. and Dehghani, M. (2016), "Topology optimization of double and triple layer grid structures using a modified gravitational harmony search algorithm with efficient member grouping strategy", Comput. Struct., 172, 40-58. https://doi.org/10.1016/j.compstruc.2016.05.008
24. Matteis, G.D., Sarracco, G. and Brando, G. (2016), "Experimental tests and optimization rules for steel perforated shear panels", J. Constr. Steel Res., 123, 41-52. https://doi.org/10.1016/j.jcsr.2016.04.025
25. Mustafa, M.A., Osman, S.A., Husam, O.A. and Al-Zand, A.W. (2018), "Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings", Steel Compos. Struct., Int. J., 26(3), 361-373.
26. Nassernia, S. and Showkati, H. (2017), "Experimental study of opening effects on mid-span steel plate shear walls", J. Constr. Steel Res., 137, 8-18. https://doi.org/10.1016/j.jcsr.2017.05.021
27. Qiao, S., Han, X., Zhou, K. and Ji, J. (2016), "Seismic analysis of steel structure with brace configuration using topology optimization", Steel Compos. Struct., Int. J., 21(3), 501-515. https://doi.org/10.12989/scs.2016.21.3.501
28. Roodsarabi, M., Khatibinia, M. and Sarafrazi, S. (2016a), "Isogeometric topology optimization of structures using level set method incorporating sensitivity analysis", Int. J. Optim. Civil Eng., 6(3), 405-422.
29. Roodsarabi, M., Khatibinia, M. and Sarafrazi, S.R. (2016b), "Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization", Steel Compos. Struct., Int. J., 21(6), 1389-1410. https://doi.org/10.12989/scs.2016.21.6.1389
30. Shekastehband, B., Azaraxsh, A.A. and Showkati, H. (2017), "Hysteretic behavior of perforated steel plate shear walls with beam-only connected infill plates", Steel Compos. Struct., Int. J., 25(4), 505-521.
31. Stromberg, L.L., Beghini, A., Baker, W.F. and Paulino, G.H. (2012), "Topology optimization for braced frames: Combining continuum and beam/column elements", Eng. Struct., 37, 106-124. https://doi.org/10.1016/j.engstruct.2011.12.034
32. Svanberg, K. (1987), "The method of moving asymptotes - A new method for structural optimization", Int. J. Numer. Meth. Eng., 24(2), 359-373. https://doi.org/10.1002/nme.1620240207
33. Tang, J., Xie, Y.M. and Felicetti, P. (2014), "Conceptual design of buildings subjected to wind load by using topology optimization", Wind Struct., Int. J., 18(1), 021-035. https://doi.org/10.12989/was.2014.18.1.021
34. TOSCA (2013), V.8.0, Tosca Structure Documentation, Dassault Systemes Company, Karlsruhe, Baden-Wurttemberg, Germany.
35. Tsavdaridis, K.D., Kingman, J.J. and Toropov, V.V. (2015), "Application of structural topology optimisation to perforated steel beams", Comput. Struct., 158, 108-123. https://doi.org/10.1016/j.compstruc.2015.05.004
36. Valizadeh, H., Sheidaii, M. and Showkati, H. (2012), "Experimental investigation on cyclic behavior of perforated steel plate shear walls", J. Constr. Steel Res., 70, 308-316. https://doi.org/10.1016/j.jcsr.2011.09.016
37. Vian, D., Bruneau, M., Tsai, K.C. and Lin, Y.C. (2009), "Special perforated steel plate shear walls with reduced beam section anchor beams. I: Experimental investigation", J. Struct. Eng., 135(3), 211-220. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(211)
38. Wang, M., Yang, W., Shi, Y. and Xu, J. (2015), "Seismic behaviors of steel plate shear wall structures with construction details and materials", J. Constr. Steel Res., 107, 194-210. https://doi.org/10.1016/j.jcsr.2015.01.007
39. Zhao, X., Liu, Y., Hua, L. and Mao, H. (2016), "Finite element analysis and topology optimization of a 12000KN fine blanking press frame", Struct. Multidiscip. Optim., 54(2), 375-389. https://doi.org/10.1007/s00158-016-1407-4
40. Zhiyi, Y., Kemin, Z. and Shengfang, Q. (2018), "Topology optimization of reinforced concrete structure using composite truss-like model", Struct. Eng. Mech., Int. J., 67(1), 79-85.
41. Zhou, K. (2016), "Topology optimization of bracing systems using a truss-like material model", Struct. Eng. Mech., Int. J., 58(2), 231-242. https://doi.org/10.12989/sem.2016.58.2.231