DOI QR코드

DOI QR Code

High Technology and Latest Trends of WBG Power Semiconductors

WBG 전력반도체 최신 기술 및 동향

  • Lee, Jeong-Hyun (Department of Materials Science and Engineering, University of Seoul) ;
  • Jung, Do-hyun (Lightweight Materials Technology Center, Gyeongbuk Technopark) ;
  • Oh, Seung-jin (Duksan Hi-Metal Co. Ltd) ;
  • Jung, Jae-Pil (Department of Materials Science and Engineering, University of Seoul)
  • 이정현 (서울시립대학교 신소재공학과) ;
  • 정도현 (경북테크노파크 경량소재융복합기술센터) ;
  • 오승진 ((주)덕산하이메탈) ;
  • 정재필 (서울시립대학교 신소재공학과)
  • Received : 2018.12.12
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

Recently, electric semiconductors became an issue because of efficient use of energy and compaction of electronics. Silicon electric semiconductors are difficult to put into it because of its physical limitations. Hence, the study of WBG (Wideband Gap) semiconductors like SiC and GaN began. These devices received attention because it can be miniaturized and worked at high temperatures over $300^{\circ}C$. WBG MOSFET electric semiconductors can show performance like silicon IGBT. This can solve the current problem of IGBT tail. The current study shows the technical principles and issues related to SiC and GaN power semiconductors. WBG devices can achieve high performance compared to silicon, but its performance can't be fully utilized because of lack in bonding technology. Therefore, this review introduces research on WBG devices and their packaging issues.

Keywords

WBG;SiC;GaN;Power semiconductor;Power module

MOKRBW_2018_v25n4_17_f0001.png 이미지

Fig. 1. Structure of power devices.1)

MOKRBW_2018_v25n4_17_f0002.png 이미지

Fig. 2. Market of power semiconductor.3)

MOKRBW_2018_v25n4_17_f0003.png 이미지

Fig. 3. Comparison of Si, SiC and GaN.4)

MOKRBW_2018_v25n4_17_f0004.png 이미지

Fig. 4. Comparison of power loss.18)

MOKRBW_2018_v25n4_17_f0005.png 이미지

Fig. 5. Comparison of ROHM inverter and existing inverter.19)

MOKRBW_2018_v25n4_17_f0006.png 이미지

Fig. 6. SEM images of sintered Ag joint using Ag particle paste.23)

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, "A Survey of Wide Bandgap Power Semiconductor Devices", IEEE Trans. Power Electron., 29, 2155 (2014). https://doi.org/10.1109/TPEL.2013.2268900
  2. A. Agarwal, "Advances in SiC MOSFET Performance", ECPE SiC & GaN Forum Potential of Wide Band Gap Semiconductors in Power Electronic Applications, Birmingham, (2011).
  3. A. Sharma, S. J. Lee, Y. J. Jang, and J. P. Jung, "SiC based Technology for High Power Electronics and Packaging Applications", J. Microelectron. Packag. Soc., 21(2), 71 (2014). https://doi.org/10.6117/kmeps.2014.21.2.071
  4. S. C. Ko, W. J. Chang, D. Y. Jung, Y. R. Park, C. H. Jun, and E. S. Nam, "Trends in Wide Band-gap Semiconductor Power Devices for Automotive, Power Conversion Modules and ETRI GaN Power Technology", Electronics and Telecommunications Trends., 29, 53 (2014).
  5. R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard, and W. L. Pribble, "A Review of GaN on SiC High Electron Mobility Power Transistors and MMICs", IEEE Trans. Microwave Theory and Techniques., 60(6), 1764 (2012). https://doi.org/10.1109/TMTT.2012.2187535
  6. V. Kulikovsky, V. Vorliček, P. Bohač, M. Stranyanek, R. Ctvrtlik, A. Kurdyumov, and L. Jastrabik, "Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films", Surf. Coat. Technol., 202, 1738 (2008). https://doi.org/10.1016/j.surfcoat.2007.07.029
  7. S. Ulrich, T. Theel, J. Schwan, V. Batori, M. Scheib, and H. Ehrhardt, "Low-temperature formation of ${\beta}$-silicon carbide", Diam. Relat. Mater., 6, 645 (1997). https://doi.org/10.1016/S0925-9635(96)00717-0
  8. J. A. Thornton, "Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings", J. Vac. Sci. Technol., 12, 830 (1975). https://doi.org/10.1116/1.568682
  9. T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami, "Interface Properties of Metal-oxide Semiconductor Structures on 4H-SiC {0001} and (1120) Formed by $N_2O$ Oxidation", JJAP, 44(3), 1213 (2005).
  10. M. Furuhashi, T. Tanioka, M. Imaizumi, N. Miura, and S. Yamakawa, "Novel Gate Oxide Process for Realization of High Threshold Voltage in 4H-SiC MOSFET", Materials Science Forum, 778-780, 985 (2014). https://doi.org/10.4028/www.scientific.net/MSF.778-780.985
  11. M. Roschke, and F. Schwierz, "Electron mobility models for 4H, 6H, and 3C SiC [MESFETs]", IEEE. Trans. Electron. Devices., 48(7), 1442 (2001). https://doi.org/10.1109/16.930664
  12. A. Itoh, T. Kimoto, and H. Matsunami, "High performance of high-voltage 4H-SiC Schottky barrier diodes", IEEE. Electron. Device. Lett., 16(6), 280 (1995). https://doi.org/10.1109/55.790735
  13. M. Bhatnagar, and B. J. Baliga, "Comparison of 6H-SiC, 3CSiC, and Si for power devices", IEEE. Trans. Electron. Devices., 40(3), 645 (1993). https://doi.org/10.1109/16.199372
  14. T. Hayashi, H. Tanaka, Y. Shimoida, S. Tanimoto, and M. Hoshi, "New High-voltage Unipolar Mode p+ Si/n- 4H-SiC Heterojunction Diode," Mater. Sci. Forum, 953, 483 (2005).
  15. W. M. Choi, and H. G. Ahn, "The Switching Characteristic and Efficiency of New Generation SiC MOSFET", J. Korea Inst. Inf. Commun. Eng., 21(2), 353 (2017). https://doi.org/10.6109/jkiice.2017.21.2.353
  16. S. Francis, "Rohm supplies silicon carbide power modules to Formula Eracing team Venturi", 4 (2017). https://www.rohm.co.kr
  17. Y. F. Wu, J. Gritters, L. Shen, R. P. Smith, J. McKay, R. Barr, and R. Birkhahn, "Performance and robustness of first generation 600-V GaN-on-Si power transistors", IEEE Workshop Wide Bandgap Power Devices and Appl. (WiPDA), 6 (2013).
  18. F. Yu, J. Cui, Z. Zhou, K. Fang, R. Johnson, and M. Hamilton, "Reliability of Ag Sintering for Power Semiconductor Die Attach in High-Temperature Applications", IEEE. Trans. Power. Electron., 32(9), 7083 (2017). https://doi.org/10.1109/TPEL.2016.2631128
  19. K. S. Siow, "Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging", J. Electron. Mater., 43(4), 947 (2014). https://doi.org/10.1007/s11664-013-2967-3
  20. M. H. Roh, H. Nishikawa, and J. P. Jung, "A Review of Ag Paste Bonding for Automotive Power Device Packaging", J. Microelectron. Packag. Soc., 22(4), 15 (2015). https://doi.org/10.6117/kmeps.2015.22.4.015
  21. T. Wang, X. Chen, G. Q. Lu, and G. Y. Lei, "Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection", J. Electron. Mater., 36(10), 1333 (2007). https://doi.org/10.1007/s11664-007-0230-5
  22. H. H. Zhu, L. Lu, and J. Fuh, "Development and characterisation of direct laser sintering Cu-based metal powder", J. Mater. Process. Technol., 140(1-3), 314 (2003). https://doi.org/10.1016/S0924-0136(03)00755-6
  23. N. S. Nobeen, T. Imade, B. H. Lee, E. J. R. Phua, C. C. Wong, and C. L. Gan, "Transient liquid phase (TLP) bonding using Sn/Ag multilayers for high temperature applications", Proc. 15th Electronics Packaging Technology Conference (EPTC), Singapore, 647 (2013).
  24. T. A. Tollefsen, A. Larsson, O. M Lovvik, and K. Aasmundtveti, "Au-Sn SLID bonding-properties and possibilities", Metallurgical and Materials Transactions B, 43B, 397 (2012).
  25. C. I. Kizilyalli, A. Edwards, D. Bour, H. Shah, D. Disney, and H. Nie, "Very-High Performance GaN-on-GaN Diodes", 1st IEEE Workshop on Wide bandgap Devices and Applications (2013).