DOI QR코드

DOI QR Code

ON THE EXISTENCE OF INSCRIBED POLYGONS

  • Lim, So Yeon (Department of Mathematics, Chonnam National University) ;
  • Jin, Hong Sung (Department of Mathematics, Chonnam National University) ;
  • Lee, Kwang Seuk (Yeosu Munsoo Middle School) ;
  • Park, Myeongsoo (Department of Mathematics, Chonnam National University) ;
  • Kim, Dong-Soo (Department of Mathematics, Chonnam National University)
  • Received : 2017.10.07
  • Accepted : 2017.11.15
  • Published : 2018.03.25

Abstract

We consider the existence problem of inscribed n-gons ($n{\geq}5$) in a circle and find a necessary condition on exterior angles $a_1,\;{\cdots},\;a_n$ of an inscribed n-gon. Conversely, we show that this condition is sufficient for an inscribed polygon with exterior angles $a_1,\;{\cdots},\;a_n$ in this cyclic order to exist.

Keywords

existence;inscribed polygon;exterior angle

References

  1. D. S. Macnab, Cyclic polygons and related questions, Math. Gazette 65(431) (1981), 22-28. https://doi.org/10.2307/3617929
  2. G. Michelacci, Inscribed polygons and fixed points of homeomorphisms on the circle, Geom. Dedicata 40(1) (1991), 103-110. https://doi.org/10.1007/BF00181655
  3. P. Schreiber, On the existence and constructibility of inscribed polygons, Beitrage zur Algebra und Geometrie 34(2) (1993), 195-199.