DOI QR코드

DOI QR Code

ANNIHILATOR GRAPHS OF COMMUTATOR POSETS

  • Varmazyar, Rezvan (Department of Mathematics, Khoy Branch, Islamic Azad University)
  • Received : 2017.10.04
  • Accepted : 2018.02.10
  • Published : 2018.03.25

Abstract

Let P be a commutator poset with Z(P) its set of zero-divisors. The annihilator graph of P, denoted by AG(P), is the (undirected) graph with all elements of $Z(P){\setminus}\{0\}$ as vertices, and distinct vertices x, y are adjacent if and only if $ann(xy)\;{\neq}\;(x)\;{\cup}\;ann(y)$. In this paper, we study basic properties of AG(P).

Keywords

Annihilator graph;zero-divisor graph;commutator poset

References

  1. S. Akbari and A. Mohammadian, On zero-divisor graphs of finite rings, J. Algebra, 33(1)(2007), 168-184.
  2. S. Akbari, H. R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra, 42(1) (2003), 169-180.
  3. S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra, 23(2) (2004), 847-855.
  4. M. Alizadeh, A. K. Das, H. R. Maimani, M. R. Pournaki and S. Yassemi, On the diameter and girth of zero-divisor graphs of posets, Discrete Applied Mathematics, 25(3) (2012), 1319-1324.
  5. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 45(2)(1999), no. 2, 434-447.
  6. A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 22(1)(2014), 108-121.
  7. I. Beck, Coloring of commutative rings, J. Algebra,28(3) (1988), 208-226.
  8. R. Halas, Annihilators and ideals in ordered sets, Czechoslovak Math. J, 22(1)(1995), no. 1, 127-134.
  9. R. Halas, Relative polars in ordered sets, Czechoslovak Math. J, 23(2)(2000), 415-429.
  10. R. Halas and M. Jukl, On Beck,s coloring of posets, Discrete Math, 44(1)(2009), 4584-4589.
  11. D. Lu and T. Wu, On bipartite zero-divisor graphs, Discrete Math, 45(4)(2009), 755-762.
  12. E. Mehdi-Nezhad and A. M. Rahimi, The annihilation graphs of commutator posets and lattices with respect to an element, J. Algebra Appl, 12(3)(2016), 175-186 .
  13. S. P. Redmond, An ideal based zero-divisor graph of a commutative ring, Comm. Algebra, 22(3)(2003), 4425-4423.
  14. Z. Xue and S. Liu, Zero-divisor graphs of partially ordered sets, Appl. Math. Lett, 52(4) (2010), 449-452.
  15. T. Wu, On directed zero-divisor graphs of finite rings, Discrete Math, 21(1) (2005), 73-86.