DOI QR코드

DOI QR Code

ISOTROPIC SMARANDACHE CURVES IN THE COMPLEX 4-SPACE

  • Ergut, Mahmut (Department of Mathematics, Namik Kemal University) ;
  • Yilmaz, Suha (Buca Faculty of Education, Dokuz Eylul University) ;
  • Unluturk, Yasin (Department of Mathematics, Faculty of Art and Sciences, Kirklareli University)
  • Received : 2017.09.05
  • Accepted : 2017.10.18
  • Published : 2018.03.25

Abstract

We define the $e^{\alpha}_1e^{\alpha}_3$-isotropic Smarandache curves of type-1 and type-2, the $e^{\alpha}_1e^{\alpha}_2e^{\alpha}_3$-isotropic Smarandache curve, and the $e^{\alpha}_1e^{\alpha}_2e^{\alpha}_4$-isotropic Smarandache curves of type-1 and type-2. Then we examine these kinds of isotropic Smarandache curve according to Cartan frame in the complex 4-space $\mathbb{C}^4$ and give some differential geometric properties of these Samarandache curves.

Keywords

Classical differential geometry;$\acute{E}$. Cartan frame;complex space $\mathbb{C}^4$;isotropic Smarandache curves;isotropic cubic

References

  1. F. Akbulut, Vektorel Analiz (in Turkish), Ege University Press, Izmir 1981.
  2. A.T. Ali, Special Smarandache curves in the Euclidean space. Int J Math Comb 2 (2010), 30-36.
  3. E. Altinisik, Complex curves in $R^4$, Unpublished MSc. dissertation, Dokuz Eylul University, Izmir, 1997.
  4. N. Bayrak, O. Bektas, S. Yuce, Special Smarandache curves in $R^3_1$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 65(2), (2016),143-160.
  5. C. Boyer, A History of Mathematics, Wiley, New York, 1968.
  6. E. Cartan, Sur les developpables isotropes et la methode du triedre mobile, C. R. Acad. Sci. Paris 151, 919-921; ouvres completes: Partie III, Divers, geometrie differentielle, vols. 1-2, Gauthier-Villars, Paris, 1955, pp. 141-143.
  7. E. Cartan, La structure des groupes de transformations continus et la theorie du triedre mobile, Bull. Sci. Math. 34, 250-284; (Euvres completes: Partie III, Divers, geometrie differentielle, vols. 1-2, Gauthier-Villars, Paris, 1955, pp. 145-178.
  8. M. Cetin, Y. Tuncer, M.K. Karacan, Smarandache curves according to Bishop frame in Euclidean 3-space. General Mathematical Notes 20 (2014), 50-56.
  9. L. Kula, Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput., 169 (1), (2005), 600-607. https://doi.org/10.1016/j.amc.2004.09.078
  10. U. Pekmen, On minimal space curves in the sense of Bertrand curves, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 10 (1999), 3-8.
  11. J. Qian and Y. H. Kim, Some isotropic curves and representation in complex space $C^3$, Bull. Korean Math. Soc. 52(3) (2015), 963-975. https://doi.org/10.4134/BKMS.2015.52.3.963
  12. F. Semin, Diferansiyel Geometri-I (in Turkish), Istanbul University, Science Faculty Press, 1983.
  13. M. Turgut, S. Yilmaz, Smarandache curves in Minkowski space-time. Int. J Math. Comb. 3 (2008), 51-55.
  14. M. Turgut, Smarandache breadth pseudo null curves in Minkowski space-time. Int. J Math. Comb. 1 (2009), 46-49
  15. S. Yilmaz and M. Turgut, Some characterizations of isotropic curves in the Euclidean space, Int. J. Comput. Math. Sci., 2(2), 2008, 107-109.
  16. S. Yilmaz, Contributions to differential geometry of isotropic curves in the complex space, J. Math. Anal. Appl., 374 (2011), 673-680. https://doi.org/10.1016/j.jmaa.2010.09.031
  17. S. Yilmaz, Isotropic Smarandache curves in complex space $C^3$, Int. J.Math. Combin. 4, (2016), 01-07.
  18. S. Yilmaz, Y. Unluturk. Contributions to differential geometry of isotropic curves in the complex space $C^3$- II, J. Math. Anal. Appl., 440(2), (2016), 561-577. https://doi.org/10.1016/j.jmaa.2016.02.072