An Exploratory Study of VR Technology using Patents and News Articles

특허와 뉴스 기사를 이용한 가상현실 기술에 관한 탐색적 연구

  • Kim, Sungbum (Department of IT Convergence, Kumoh National Institute of Technology)
  • 김성범 (금오공과대학교 IT융합학과)
  • Received : 2018.08.20
  • Accepted : 2018.11.20
  • Published : 2018.11.28


The purpose of this study is to derive the core technologies of VR using patent analysis and to explore the direction of social and public interest in VR using news analysis. In Study 1, we derived keywords using the frequency of words in patent texts, and we compared by company, year, and technical classification. Netminer, a network analysis program, was used to analyze the IPC codes of patents. In Study 2, we analyzed news articles using T-LAB program. TF-IDF was used as a keyword selection method and chi-square and association index algorithms were used to extract the words most relevant to VR. Through this study, we confirmed that VR is a fusion technology including optics, head mounted display (HMD), data analysis, electric and electronic technology, and found that optical technology is the central technology among the technologies currently being developed. In addition, through news articles, we found that the society and the public are interested in the formation and growth of VR suppliers and markets, and VR should be developed on the basis of user experience.


Virtual Reality;Patent;News Articles;Text Mining;Network Analysis

DJTJBT_2018_v16n11_185_f0001.png 이미지

Fig. 1. Analysis of Community (IPC-4 digit)

DJTJBT_2018_v16n11_185_f0002.png 이미지

Fig. 2. VR related News articles

DJTJBT_2018_v16n11_185_f0003.png 이미지

Fig. 3. Deriving the coefficient of associationnij= EC_AB, Nj=EC_A, Ni= EC_B, N= Total EC

Table 1. Number of Articles by Journal (2010~Jan. 2018)

DJTJBT_2018_v16n11_185_t0001.png 이미지

Table 2. Methodology and Analysis

DJTJBT_2018_v16n11_185_t0002.png 이미지

Table 3. Top 20 Keyword by Period

DJTJBT_2018_v16n11_185_t0003.png 이미지

Table 4. Top 20 Keyword by Players

DJTJBT_2018_v16n11_185_t0004.png 이미지

Table 5. Top 20 Keyword by IPC code

DJTJBT_2018_v16n11_185_t0005.png 이미지

Table 6. Analysis of Centrality (IPC- 4 digit)

DJTJBT_2018_v16n11_185_t0006.png 이미지

Table 7. Analysis of Centrality (IPC- 7 digit)

DJTJBT_2018_v16n11_185_t0007.png 이미지

Table 8. IPC Code Description

DJTJBT_2018_v16n11_185_t0008.png 이미지

Table 9. IPC codes and technology sector by Community

DJTJBT_2018_v16n11_185_t0009.png 이미지

Table 10. Keyword selection based on TF-IDF

DJTJBT_2018_v16n11_185_t0010.png 이미지

Table 11. Words associated with VR

DJTJBT_2018_v16n11_185_t0011.png 이미지


Supported by : Kumoh National Institute of Technology


  1. D. M. Hilty et al. (2006). Virtual reality, telemedicine, web and data processing innovations in medical and psychiatric education and clinical care. Academic Psychiatry, 30(6), 528-533.
  2. C. J. Bohil, B. Alicea & F. A. Biocca. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12).
  3. C. J. Turner, W. Hutabarat, J. Oyekan & A. Tiwari. (2016). Discrete Event Simulation and Virtual Reality Use in Industry: New Opportunities and Future Trends. IEEE Transactions on Human-Machine Systems, 46(6), 882-894.
  4. M. N. K. Boulos, L. Hetherington & S. Wheeler. (2007). Second Life: an overview of the potential of 3-D virtual worlds in medical and health education. Health Information & Libraries Journal, 24(4), 233-245.
  5. F. Lin & W. Ye. (2009). Operating system battle in the ecosystem of smartphone industry. Paper presented at the 2009 international symposium on information engineering and electronic commerce.
  6. J. H. Kim & S. H. Lee. (2009). An effect analysis of Web basis Virtual Reality education Contents - Around the graphics transition. [An effect analysis of Web basis Virtual Reality education Contents - Around the graphics transition -. Journal of Digital Design, 9(4), 65-74.
  7. L. F. Tegarden, D. E. Hatfield & A. E. Echols. (1999). Doomed from the Start: What Is the Value of Selecting a Future Dominant Design? Strategic Management Journal, 20(6), 495-518.<495::AID-SMJ43>3.0.CO;2-M
  8. L. Piron, F. Cenni, P. Tonin & M. Dam. (2001). Virtual reality as an assessment tool for arm motor deficits after brain lesions. Paper presented at the Studies in Health Technology and Informatics.
  9. M. V. Sanchez-Vives & M. Slater. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332-339.
  10. J. E. Dunsmoor, F. Ahs, D. J. Zielinski & K. S. LaBar. (2014). Extinction in multiple virtual reality contexts diminishes fear reinstatement in humans. Neurobiology of Learning and Memory, 113, 157-164.
  11. S. Basso Moro et al. (2014). A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: A functional near-infrared spectroscopy study. NeuroImage, 85, 451-460.
  12. W. I. M. Willaert, R. Aggarwal, V. Herzeele, I. N. J. Cheshire & F. E. Vermassen. (2012). Recent advancements in medical simulation: Patient-specific virtual reality simulation. World Journal of Surgery, 36(7), 1703-1712.
  13. A. S. Merians et al. (2002). Virtual reality-augmented rehabilitation for patients following stroke. Physical Therapy, 82(9), 898-915.
  14. J. J. Kozak, P. A. Hancock, E. J. Arthur & S. T. Chrysler. (1993). Transfer of training from virtual reality. Ergonomics, 36(7), 777-784.
  15. C. J. Lin, H. J. Chen, P. Y. Cheng & T. L. Sun. (2014). Effects of Displays on Visually Controlled Task Performance in Three-Dimensional Virtual Reality Environment. Human Factors and Ergonomics In Manufacturing.
  16. K. H. Lee & K. C. H. (2016). Virtual Reality-based Training Program Using Computer-human Interface for Recovery of Upper Extremity Use in Stroke Patients. Journal of Digital Convergence, 14(1), 285-290.
  17. T. J. Lin & Y. J. Lan. (2015). Language learning in virtual reality environments: Past, present, and future. Educational Technology and Society, 18(4), 486-497.
  18. J. W. Kim, S. J. Park, G. Y. Min & K. M. Lee. (2017). Virtual Reality based Situation Immersive English Dialogue Learning System. Journal of Convergence for Information Technology, 7(6), 245-251.
  19. H. H. Ip et al. (2018). Enhance emotional and social adaptation skills for children with autism spectrum disorder: A virtual reality enabled approach. Computers and Education, 117, 1-15.
  20. P. Williams & J. P. Hobson. (1995). Virtual reality and tourism: fact or fantasy? Tourism Management, 16(6), 423-427.
  21. D. A. Guttentag. (2010). Virtual reality: Applications and implications for tourism. Tourism Management, 31(5), 637-651.
  22. I. P. Tussyadiah, D. Wang, T. H. Jung & M. C. tom Dieck. (2018). Virtual reality, presence, and attitude change: Empirical evidence from tourism. Tourism Management, 66, 140-154.
  23. S. K. Sweeney, P. Newbill, T. Ogle & K. Terry. (2018). Using Augmented Reality and Virtual Environments in Historic Places to Scaffold Historical Empathy. TechTrends, 62(1), 114-118.
  24. Z. Lv, T. Yin, X. Zhang, H. Song & G. Chen. (2016). Virtual Reality Smart City Based on WebVRGIS. IEEE Internet of Things Journal, 3(6), 1015-1024.
  25. W. S. Khor, B. Baker, K. Amin, A. Chan, K. Patel & J. Wong. (2016). Augmented and virtual reality in surgery-the digital surgical environment: Applications, limitations and legal pitfalls. Annals of Translational Medicine, 4(23).
  26. B. K. Wiederhold. (2017). How Augmented Reality Is Poised to Outpace Virtual Reality. Cyberpsychology, Behavior, and Social Networking, 20(8), 461-462.
  27. N. S. Ali & M. Nasser. (2017). Review of virtual reality trends (previous, current, and future directions), and their applications, technologies and technical issues. ARPN Journal of Engineering and Applied Sciences, 12(3), 783-789.
  28. A. Li, Z. Montano, V. J. Chen & J. I. Gold. (2011). Virtual reality and pain management: current trends and future directions. Pain Management, 1(2), 147-157.
  29. T. Sun & Y. Liu. (2012) Development of virtual reality technology research via patents data mining. AISC. Advances in Intelligent and Soft Computing, 117, 111-116.
  30. B. Spear. (2002). Virtual reality: Patent review. World Patent Information, 24(2), 103-109.
  31. R. Rodriguez-Esteban & M. Bundschus. (2016). Text mining patents for biomedical knowledge. Drug Discovery Today, 21(6), 997-1002.
  32. H. J. No, Y. An & Y. Park. (2015). A structured approach to explore knowledge flows through technology-based business methods by integrating patent citation analysis and text mining. Technological Forecasting and Social Change, 97, 181-192.
  33. L. Yanhong & T. Runhua. (2007) A text-mining-based patent analysis in product innovative process. IFIP Advances in Information and Communication Technology, 250, 89-96.
  34. B. Yoon & Y. Park. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. Journal of High Technology Management Research, 15(1), 37-50.
  35. N. Bechet, J. Chauche, V. Prince & M. Roche. (2014). How to combine text-mining methods to validate induced verb-object relations? Computer Science and Information Systems, 11(1), 133-155.
  36. J. Tian, M. Gao, Z. Zhang & J. Ren. (2012). Web text mining based on self-adaptive genetic support vector machine. Advanced Science Letters, 7, 653-657.
  37. I. Segura-Bedmar & P. Martinez. (2015). Pharmacovigilance through the development of text mining and natural language processing techniques. Journal of Biomedical Informatics, 58, 288-291.
  38. M. Perovsek, J. Kranjc, T. Erjavec, B. Cestnik & N. Lavrac. (2015). TextFlows: A visual programming platform for text mining and natural language processing. Science of Computer Programming.
  39. A. Cheptsov, A. Tenschert, P. Schmidt, B. Glimm, M. Matthesius & T. Liebig. (2014) Introducing a new scalable data-as-a-service cloud platform for enriching traditional text mining techniques by integrating ontology modelling and natural language processing. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8182, 62-74.
  40. B. Xie, Q. Ding & D. Wu. (2014). Text mining on big and complex biomedical literature. Big Data Analytics in Bioinformatics and Healthcare, 21-45.
  41. C. H. Wei, B. R. Harris, H. Y. Kao & Z. Lu. (2013). TmVar: A text mining approach for extracting sequence variants in biomedical literature. Bioinformatics, 29(11), 1433-1439.
  42. C. Tang & L. Guo. (2013). Digging for gold with a simple tool: Validating text mining in studying electronic word-of-mouth (eWOM) communication. Marketing Letters, 1-14.
  43. O. Netzer, R. Feldman, J. Goldenberg & M. Fresko. (2012). Mine your own business: Market-structure surveillance through text mining. Marketing Science, 31(3), 521-543.
  44. Y. Guo, T. Ma, A. L. Porter & L. Huang. (2012). Text mining of information resources to inform Forecasting Innovation Pathways. Technology Analysis and Strategic Management, 24(8), 843-861.
  45. B. Yoon, R. Phaal & D. Probert. (2008). Morphology analysis for technology roadmapping: Application of text mining. R and D Management, 38(1), 51-68.
  46. C. H. Yu, A. Jannasch-Pennell & S. DiGangi. (2011). Compatibility between Text Mining and Qualitative Research in the Perspectives of Grounded Theory, Content Analysis, and Reliability. Qualitative Report, 16(3), 730-744.
  47. Y. Yi, L. Liu, C. H. Li, W. Song & S. Liu. (2012). Machine learning algorithms with co-occurrence based term association for text mining. Paper presented at the Proceedings - 4th International Conference on Computational Intelligence and Communication Networks, CICN 2012.
  48. M. Albathan, Y. Li & A. Algarni. (2012). Using patterns co-occurrence matrix for cleaning closed sequential patterns for text mining. Paper presented at the Proceedings - 2012 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2012.
  49. Y. Lu, Q. Mei & C. Zhai. (2011). Investigating task performance of probabilistic topic models: An empirical study of PLSA and LDA. Information Retrieval, 14(2), 178-203.
  50. M. M. Mostafa. (2013). More than words: Social networks' text mining for consumer brand sentiments. Expert Systems with Applications, 40(10), 4241-4251.
  51. Y. Dang, Y. Zhang & H. Chen. (2010). A lexicon-enhanced method for sentiment classification: An experiment on online product reviews. IEEE Intelligent Systems, 25(4), 46-53.
  52. S. P. Borgatti, A. Mehra, D. J. Brass & G. Labianca. (2009). Network analysis in the social sciences. Science, 323(5916), 892-895.
  53. N. Cyram. (2013). Cyram Netminer 4.1. Seoul: Cyram.
  54. J. Liebowitz. (2005). Linking social network analysis with the analytic hierarchy process for knowledge mapping in organizations. Journal of Knowledge Management, 9(1), 76-86.
  55. G. R. Henderson, D. Iacobucci & B. J. Calder (1998). Brand diagnostics: Mapping branding effects using consumer associative networks. European Journal of Operational Research, 111(2), 306-327.
  56. F. Hu & Y. Liu. (2016). A new algorithm CNM-Centrality of detecting communities based on node centrality. Physica A: Statistical Mechanics and its Applications, 446, 138-151.
  57. M. Ovelgonne & A. Geyer-Schulz. (2012). A comparison of agglomerative hierarchical algorithms for modularity clustering. Challenges at the Interface of Data Analysis, Computer Science, and Optimization (pp. 225-232): Springer.
  58. D. Kim & S. Kim. (2017) Sustainable Supply Chain Based on News Articles and Sustainability Reports: Text Mining with Leximancer and DICTION. Sustainability, 9(6), 1008.
  59. M. Qu, L. Tahvanainen, P. Ahponen & P. Pelkonen. (2009). Bio-energy in China: Content analysis of news articles on Chinese professional internet platforms. Energy Policy, 37(6), 2300-2309.
  60. S. M. H. Dadgar, M. S. Araghi & M. M. Farahani. (2016). A novel text mining approach based on TF-IDF and support vector machine for news classification. Paper presented at the Proceedings of 2nd IEEE International Conference on Engineering and Technology, ICETECH 2016.
  61. G. Kim, J. Lee, D. Jang & S. Park. (2016). Technology Clusters Exploration for Patent Portfolio through Patent Abstract Analysis. Sustainability, 8(12), 1252.
  62. G. Salton & C. Buckley. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513-523.
  63. F. Lancia. (2012) The logic of the T-LAB tools explained. Retrieved September, 2.
  64. F. Lancia. (2016). T-LAB Plus-User's Manual, Tools for Text Analysis.
  65. B. Papaleo, G. Cangiano & S. Calicchia, (2013). Occupational safety and health professionals' training in Italy: Qualitative evaluation using T-LAB. Journal of Workplace Learning, 25(4), 247-263.