DOI QR코드

DOI QR Code

A Study on User Acceptance of Patent Application Education System: Focused on the Effect of Prior Knowledge

특허출원교육시스템의 사용자 수용관계에 관한 연구: 사전지식의 조절효과 중심

  • Park, JaeSung (Business Incubating Center, Chonnam National University)
  • 박재성 (전남대학교 창업보육센터)
  • Received : 2018.02.07
  • Accepted : 2018.03.20
  • Published : 2018.03.28

Abstract

The purpose of this study was to analyze the college students' acceptance of PatentNOW, which was developed for effective proceeding of patent application education program. Results of this research as follow. First, perceived ease of use positively influenced perceived usefulness. Second, perceived usefulness and perceived ease of use positively influenced attitude toward using and attitude toward using also positively influenced behavioral intention to use. Third, the level of prior knowledge about the patent system and experience of patent application possessed by the users of PatentNOW had a negative effect on the relationship between perceived ease of use and attitude toward using. These results suggested that the teaching method of utilizing PatentNOW should be differentiated according to the level of prior knowledge of the students in order to improve the quality of patent application education.

Keywords

Patent Application Education;PatentNOW;Technology Acceptance Model;Prior Knowledge;Moderating Effect

References

  1. S. Kim. (2011). Development of the Evaluation System for Learning Outcomes of Capstone Design Course, Journal of Korea Academia-Industrial cooperation Society, 12(8), 3452-3457. DOI : 10.5762/KAIS.2011.12.8.3452 https://doi.org/10.5762/KAIS.2011.12.8.3452
  2. J. Park. (2017). How can we Develop Students' Creativity?: Redesigning a Creativity Program based on Flow Theory. Journal of Practical Engineering Education, 9(2), 91-98. DOI : 10.14702/JPEE.2017.091
  3. J. Park. (2018). A Study on the Direction of Entrepreneurship Education in the Age of 4th Industrial Revolution: Focusing on the Effect of Entrepreneurship Education Types, Journal of the Korean Entrepreneurship Socieity, 13(1), 40-67. DOI : 10.24878/tkes.2018.13.1.040
  4. W. Cha & H. Lee. (2017). A Typology Study of Corporation Patent Strategy Using Competing Value Model, Journal of Digital Convergence, 15(8), 33-43. DOI : 10.14400/JDC.2017.15.8.33 https://doi.org/10.14400/JDC.2017.15.8.33
  5. J. Park, J. Kim & J. Koh. (2010). Determinants of Continuous Usage Intention in Web Analytics Services. Electronic Commerce Research and Applications, 9(1), 61-72. DOI : 10.1016/j.elerap.2009.08.007 https://doi.org/10.1016/j.elerap.2009.08.007
  6. M. Fishbein & I. Ajzen. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. MA: Addison-Wesley.
  7. I. Ajzen, & M. Fishbein. (1980). Understanding Attitudes and Predicting Social Behaviour, Prentice-Hall.
  8. F. D. Davis. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. DOI : 10.2307/249008 https://doi.org/10.2307/249008
  9. I. Ajzen. (1985). From Intentions to Actions: A Theory of Planned Behavior. Springer Berlin Heidelberg.
  10. V. Venkatesh & F. D. Davis. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. DOI : 10.1287/mnsc.46.2.186.11926 https://doi.org/10.1287/mnsc.46.2.186.11926
  11. H. L. Chiesi, G. J. Spilich, & J. F. Voss. (1979). Acquisition of Domain-Related Information in Relation to High and Low Domain Knowledge. Journal of Verbal Learning and Verbal Behavior, 18(3), 257-273. DOI : 10.1016/S0022-5371(79)90146-4 https://doi.org/10.1016/S0022-5371(79)90146-4
  12. J. W. Alba & J. W. Hutchinson. (1987) Dimensions of Consumer Expertise. Journal of Consumer Research, 13(4), 411-454. DOI : 10.1086/209080 https://doi.org/10.1086/209080
  13. D. P. Ausubel, J. D. Novak, & H. Hanesian. (1978). Educational Psychology: A Cognitive View, New York : Holt.
  14. G. Yoon. (1994). The Effects of Instructional Control, Cognitive Style, and Prior Knowledge on Learning of Computer-Assisted Instruction. Journal of Educational Technology Systems, 22(4), 357-370. DOI : 10.2190/8AVP-REQ0-HAHC-1YJH https://doi.org/10.2190/8AVP-REQ0-HAHC-1YJH
  15. M. Brucks (1985). The effects of product class knowledge on information search behavior. Journal of consumer research, 12(1), 1-16. DOI : 10.1086/209031 https://doi.org/10.1086/209031
  16. C. W. Park & V. P. Lessig. (1981). Familiarity and Its Impact on Consumer Decision Biases and Heuristic. Journal of Consumer Research, 8(2), 223-230. DOI : 10.1086/208859 https://doi.org/10.1086/208859
  17. A. R. Rao & K. B. Monroe. (1988). The Moderating Effect of Prior Knowledge on Cue Utilization in Product Evaluation. Journal of Consumer Research, 15(2), 253-264. DOI : 10.1086/209162 https://doi.org/10.1086/209162
  18. J. R. Bettman & C. W. Park. (1980). Effects of Prior Knowledge and Experience and Phase of the Choice Process on Consumer Decision Processes: A Protocol Analysis. Journal of Consumer Research, 7(3), 234-248. DOI : 10.1086/208812 https://doi.org/10.1086/208812
  19. T. F. Mangleburg et al. (1998). The Moderating Effect of Prior Experience in Consumers' Use of User-Image Based Versus Utilitarian Cues in Brand Attitude. Journal of Business and Psychology, 13(1), 101-113. DOI : 10.1023/A:1022927201433 https://doi.org/10.1023/A:1022927201433
  20. D. L. Hoffman & T. P. Novak. (1996). Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations. The Journal of Marketing, 60(3), 50-68. DOI : 10.2307/1251841 https://doi.org/10.2307/1251841
  21. J. A. Castaneda, F. Munoz-Leiva, & T. Luque. (2007). Web Acceptance Model (WAM): Moderating Effects of User Experience. Information & Management, 44(4), 384-396. DOI : 10.1016/j.im.2007.02.003 https://doi.org/10.1016/j.im.2007.02.003
  22. L. R. Flynn & R. E. Goldsmith. (1999). A Short, Reliable Measure of Subjective Knowledge. Journal of Business Research, 46(1), 57-66. DOI : 10.1016/S0148-2963(98)00057-5 https://doi.org/10.1016/S0148-2963(98)00057-5
  23. J. C. Nunnally & I. H. Bernstein. (1978). Psychometric Theory, McGraw-Hill New York.
  24. J. F. Hair et al. (1998). Multivariate Data Analysis, Upper Saddle River, NJ: Prentice hall.
  25. S. Park, D. Kwag and E. Park (2015). The Study of the Aviation Industrial Technology Convergence through Patent analysis, Journal of the Korea Convergence Society, 6(5), 219-225. DOI : 10.15207/JKCS.2015.6.5.219 https://doi.org/10.15207/JKCS.2015.6.5.219
  26. Y. Han (2017). Patenting Trend of Internet of Things(IoT) in China, Korea Convergence Society, 8(8), 1-8. DOI : 10.15207/JKCS.2017.8.8.001
  27. J. Kim, J. Park & B. Lee (2017). Implementation of Functional Blocks of Modular Toy for Creative Education, Journal of Convergence for Information Technology, 7(5), 95-102. DOI : 10.22156/CS4SMB.2017.7.5.095 https://doi.org/10.22156/CS4SMB.2017.7.5.095
  28. J. Shin & K. Kim (2016). A study on the success factors in the Enterprise Information Systems introduced, Journal of Convergence for Information Technology, 6(4), 1-8. DOI : 10.22156/CS4SMB.2016.6.4.001