DOI QR코드

DOI QR Code

Analysis of Socio-Scientific Issues(SSI) Programs in Korea

과학 관련 사회적 쟁점(Socio-Scientific Issues, SSI)을 활용한 국내 프로그램 분석

  • Park, HyunJu (Department of Chemistry Education, Chosun University) ;
  • Kim, Nahyung (Department of Chemistry Education, Chosun University)
  • 박현주 (조선대학교 화학교육과) ;
  • 김나형 (조선대학교 화학교육과)
  • Received : 2017.10.08
  • Accepted : 2018.01.17
  • Published : 2018.04.20

Abstract

The purpose of this study was to analysis total number of 123 SSI programs by SSI criteria. The criteria was consisted of subject, school level, starting point, scientific evidence, social content, use of scientific knowledge, level of conflict of interest, and evaluation and reflection. The results of the analysis are as follows. First, elementary school programs were the most and middle school programs were relatively few. Second, starting point was mainly in the actual situation, the fiction and nonfiction situation, and the situation including the controversy and conflict was less than 10%. Third, it was based on scientific evidence but mainly influenced by individual values and perceptions. Fourth, social contents were developed mainly in ethics/morality/value, political/social life/economy, environment contents. Fifth, the use of scientific knowledge mainly consisted of scientific decision making, scientific critical thinking, and information search. However, science inquiry, risk assessment, and cost effectiveness were less than 10%. Scientific inquiry is the essential factor of science education, and one of core competencies of national science curriculum. SSI program should be able to experience various kinds of conflicts, and to evaluate and reflect through reflection.

Acknowledgement

Supported by : 한국연구재단

References

  1. Shim, M. Y.; Cho, H. H. Journal of the Korean Association for Research in Science Education 2009, 29, 513.
  2. Pak, U. J. Journal of the Korea Bioethics Association 2015, 16, 1.
  3. Ryu, S. ChemWorld 2017, 3, 55.
  4. Park, J. Journal of the Korean Association for Research in Science Education 2016, 36, 413. https://doi.org/10.14697/jkase.2016.36.3.0413
  5. NGSS Lead States, Next Generation Science Standards: For States, by States; National Academics Press: 2013.
  6. Ryu, S; Sandoval, W. A. Science Education 2012, 96, 488. https://doi.org/10.1002/sce.21006
  7. Zeidler, D. L.; Sadler, T. D.; Simmons, N. L.; Howes, E. V. Science Education 2005, 89, 357. https://doi.org/10.1002/sce.20048
  8. Park, H. J.; Baek, Y.; Sim, J. Developing Teaching-Learning Program for Socio-Scientific Issues; Project Report, Korea Foundation for the Advancement of Science & Creativity, 2016.
  9. Zeidler, D. L.; Nichols, B. H. Journal of Elementary Science Education 2009, 21, 49. https://doi.org/10.1007/BF03173684
  10. Zeidler, D. L. Socioscientific Issues as a Curriculum Emphasis: Theory, Research and Practice. In Handbook of Research on Science Education; Lederman N. G., Abell S. K. eds.; Routledge: New York, 2014; pp 697-726.
  11. Zeidler, D. L. The Role of Moral Reasoning on Socioscientific Issues and Discourse in Science Education; Kluwer Academic Publishers: Netherlands, 2003.
  12. Aikenhead, G. S. Journal of Research in Science Teaching 1984, 21, 167. https://doi.org/10.1002/tea.3660210208
  13. Flower, S. R.; Zeidler, D. L.; Sadler, T. D. International Journal of Science Education 2009, 31, 279. https://doi.org/10.1080/09500690701787909
  14. Sadler, T. D. Studies in Science Education 2009, 45, 1.
  15. Zeidler, D. L.; Walker, K. A.; Ackett, W. A.; Simons, M. L. Science Education 2002, 86, 343. https://doi.org/10.1002/sce.10025
  16. Lee, H. J.; Chang, H. S. Journal of Curriculum & Evaluation 2008, 10, 189.
  17. Lee, H. O. Construction of Nature of Technology Framework and Its Utilization for Investigation of Changes in College Students' Perception of Nature of Technology Through SSI-based Program. Ph.D. Thesis, Ewha Womans University, Korea, 2015.
  18. Ministry of Education, Science, and Technology. (Notification No. 2009-41); Ministry of Education, Science, and Technology: Seoul, 2010.
  19. Millar, R.; Osborne, J. Beyond 2000: Science Education for the Future; King's College London School of Education: London, 1998.
  20. Ministry of Education. 2015 Revised Science Curriculum. (No. 2015-74); 2009.
  21. Ministry of Education and Science Technology. 2009 Revised National Science Curriculum. (2009-14); Ministry of Education and Science Technology: 2009.
  22. Berkowitz, M. W.; Simmons, P. The Role of Moral Reasoning on Socioscientific Issues and Discourse in Science Education; Kluwer Academic Publishers: Dordrecht, Netherlands, 2003.
  23. Sadler, T. D.; Barab, S. A.; Scott, B. Research in Science Education 2007, 37, 371. https://doi.org/10.1007/s11165-006-9030-9
  24. Ekborg, M.; Ideland, M.; Malmberg, C. NorDiNa 2009, 5, 35.
  25. Yang, J.; Kim, H.; Gao, L.; Kim, E.; Kim, S.; Lee, H. Journal of the Korean Association for Research in Science Education 2012, 1, 113.
  26. Mitchener, C. P.; Anderson, R. D. Journal of Research in Science Teaching 1989, 26, 351. https://doi.org/10.1002/tea.3660260407
  27. Lee, H. J. Journal of the Korean Association for Research in Science Education 2016, 36, 539. https://doi.org/10.14697/jkase.2016.36.4.0539
  28. Lee, H. J.; Chang, H. S. Journal of Korean Association in Science Education 2010, 30, 353.
  29. Yoo, J. S.; Choi, S. Y.; Lee, H. J. Journal of Research in Science Teaching 2011, 15, 415.
  30. Yang, J. E.; Kim, H. J.; Gao, L.; Kim, E. J.; Kim, S. W.; Lee, H. J. Journal of Korean Association in Science Education 2012, 32, 113. https://doi.org/10.14697/jkase.2012.32.1.113
  31. Ekborg, M.; Ottander, C. Science in Social Contexts (www.sisc.se) 2013.
  32. Lee, H. J.; Abd-El-Khalick, F.; Choi, K. H. Canadian Jo 6, 97.
  33. Lee, H. J.; Witz, K. Journal of Science Education 2009, 31, 931. https://doi.org/10.1080/09500690801898903
  34. Sadler, T. D.; Murakami, C. D. Revista Brasileira de Pesquisa em Educacao em Ciencias 2014, 14, 2.
  35. Choi, K. H.; Cho, H. H. Journal of Korean Association in Science Education 2003, 23, 131.
  36. Ratcliffe, M.; Grace, M. Teaching Socio-scientific Issues; Open University Press: Maidenhead, 2003.
  37. Yakob, N.; Yunus, H. M.; May, C. Y. US-China Education Review 2015, 5, 634.
  38. Ottander, C.; Ottander, K. Teachers' Design of Socio-scientific Inquiry Based Teaching and Learning Sessions. Proceeding of the ESERA 2017 Conference, Irlend, 2017.
  39. Greer, K.; Glaze, A. Socio-scientific Argumentation as a Driver for Science Learning. New Perspectives in Science Education; Conference Proceedings, 5th Eds.; PIXEL: 2016.
  40. Bruguiere, C.; Tiberghien, A.; Clement, P. Topics and Trends in Current Science Education. 9th ESERA Conference Selected Contributions; Springer: 2014.
  41. Ekbord, M. Ekborg, M. Journal of Biological Education, 2008, 42, 60. https://doi.org/10.1080/00219266.2008.9656112
  42. Elam, M.; Bertilsson, M. European Journal of Social Theory 2003, 6, 233. https://doi.org/10.1177/1368431003006002005
  43. Nowotny, H.; Scott, P.; Gibbons, M. Re-Thinking Science: Knowledge and the Public in an Age of Uncertainty; Polity Press: Cambridge, 2002.
  44. Mogensen, F.; Mayer, M. A Comparative Study on Ecoschool Development Process; ENSI/SEED: Wien, 2005.
  45. Zeidler, D. L.; Kahn, S. It's Debatable!: Using Socioscientific Issues to Develop Scientific Literacy K-12; National Science Teachers Association Press: Arlington, VA, 2014.
  46. Weizman, A.; Shwartz, Y.; Fortus, D.; Krajcik, J. Developing the Practice of Scientitic Modeling through Classroom Discussion. Paper presented at the National Association for Research in Science Teaching Conference, Baltimore, 2008.
  47. Scott, A.; Zeidler, D. L.; Chiodo, K. L. Using Socioscientific Issues as Contexts for Teaching Concepts and Content. Exemplary Science for Resolving Societal Challenges; National Science Teachers Association Press: VA, 2010.
  48. Song, I. Liberal Education 2015, 9, 265.
  49. Dilon, J.; Scott, W. International Journal of Science Education 2002, 24, 1111. https://doi.org/10.1080/09500690210137737
  50. Lindahl, B. R.; Ekborg, M. I.; Ottander, C. S. US-China Education Review 2011, 342.
  51. Gough, S. Environmental Education Research 2002, 8, 61. https://doi.org/10.1080/13504620120109664
  52. Texley, J; Wild, A. NSTA Pathways to the Science Standards, High School Edition; National Academies Press: Washington, DC, 1996.
  53. Klosterman, M. L.; Sadler, T. D. Research in Science Education 2011, 42, 51.
  54. Kolsto, S. D. Science Education 2001, 85, 291. https://doi.org/10.1002/sce.1011
  55. Ham, E. H.; Jang, H.; Shin, T. S. Korean Journal of Educational Research 2015, 53, 305.