Flow-Induced Noise Prediction for Submarines

잠수함 형상의 유동소음 해석기법 연구

  • Yeo, Sang-Jae (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University) ;
  • Kwon, Hyun-Wung (Department of Naval Architecture and Ocean Engineering, Koje College) ;
  • Seol, Hanshin (Korea Research Institute of Ships & Ocean Engineering)
  • 여상재 (서울대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 송지훈 (전남대학교 조선해양공학전공) ;
  • 권현웅 (거제대학교 조선해양공학과) ;
  • 설한신 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2018.11.08
  • Accepted : 2018.12.28
  • Published : 2018.12.31


Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).


Supported by : 해양시스템공학연구소(RIMSE), 연구재단


  1. Choi, W. S., S. Y. Hong, J. H. Song, H. W. Kwon and C. M. Jung(2014), Turbulent-Induced Noise around a Circular Cylinder using Permeable FW-H Method, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 6, pp. 752-759.
  2. Choi, W. S., Y. S. Choi, S. Y. Hong, J. H. Song, H. W. Kwon and C. M. Jung(2016), Turbulence-induced noise of a submerged cylinder using a permeable FW H method, International Journal of Naval Architecture and Ocean Engineering, Vol. 8, No 3, pp. 235-242.
  3. Curle, N. (1955), The influence of solid boundaries upon aerodynamic sound, Proceedings of the Royal Society of London. Series A, Mathmatical and Physical Science, Vol. 505, pp. 505-514.
  4. Deane, G. B. and M. D. Stokes(2010), Model calculations of the underwater noise of breaking waves and comparison with experiment, The Journal of the Acoustical Society of America, Vol. 127, No. 6, pp. 3394-3410.
  5. Deane, G. B. and M. D. Stokes(2002), Scale dependence of bubble creation mechanisms in breaking waves. Nature, Vol. 418, No. 6900, p. 839.
  6. Farassat, F. (2007), Derivation of Formulations 1 and 1A of Farassat, NASA/TM-2007-214853.
  7. Farassat, F. and K. S. Brentner(1988), Supersonic Quadrupole Noise Theory for High-speed Helicopter Roters, Journal of Sound and Vibration, Vol. 218, No. 3, pp. 481-500.
  8. Ffowcs Williams, J. E. and D. L. Hawkings(1969), Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions of the Royal Society of London A, Vol. 264, No. 1151, pp. 321-342.
  9. Hinze, J. O. (1955), Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE Journal, Vol. 1, No. 3, pp. 289-295.
  10. Ianiello, S., R. Muscari and A. Di Mascio(2014), Ship underwater noise assessment by the acoustic analogy, part II: hydroacoustic analysis of a ship scaled model, Journal of Marine Science and Technology, Vol. 3, No. 1, pp. 52-74.
  11. Lighthill, M. J. (1952), On Sound Generated Aerodynamically, I: General Theory, Proceedings of the Royal Society, A221, pp. 564-587.
  12. OpenFOAM(2018),
  13. Prosperetti, A. (1977), Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. The Journal of the Acoustical Society of America, Vol. 61, No. 1, pp. 17-27.
  14. Testa, C. and L. Greco(2018), Prediction of submarine scattered noise by the acoustic analogy, Journal of Sound and Vibration, Vol. 426, pp. 186-218.
  15. Wang, M., J. B. Freund and S. K. Lele(2006), Computational Prediction of Flow-Generated Sound, Annual Review of Fluid Mechanics, Vol. 38, pp. 483-512.