TPM 활동요인이 기업성과에 미치는 영향에 대한 메타분석

Meta-analysis of the effects of TPM activity factors on Corporate performance

  • 연경화 (청주대학교 경상대학 경영학과)
  • 투고 : 2018.01.02
  • 심사 : 2018.02.20
  • 발행 : 2018.02.28


이 연구의 목적은 TPM을 대한 주제로 작성된 논문 중 검증이 가능한 18편의 논문을 대상으로 메타분석을 실시하는 것이다. 분석을 위해 5개의 가설을 설정하고 각 연구논문에서 제시한 t값을 투입하여 CMA로 메타분석을 실시하였다. 분석 결과 4개 가설에 있어서 I-square 값이 모두 75%이상인 것으로 나타나 이질성이 매우 큰 것으로 분석되었다. 따라서 모든 연구의 모집단 효과크기는 같다는 귀무가설은 기각되었다. 이질성의 원인은 분석에 사용된 개별연구의 응답자분포, 연구조건, 연구시기, 연구지역 등의 연구특성이 다르기 때문이다. 이러한 경우 효과크기의 차이를 분석하기 위해서는 연구특성별로 구분할 수 있는 개별연구들의 요약 통계량이 필요하다. 그러나 개별연구들에서는 효과차이를 분류할 수 있도록 하는 요약통계량이 제시되지 않아서 이질성의 원인에 대한 분석을 실시할 수 없는 것이 아쉬운 점이라 하겠다.

The purpose of this study is to conduct a meta-analysis of 18 papers that can be verified among the papers on the subject of TPM. Five hypotheses were set for the analysis and meta - analysis was carried out with CMA as presented in each research paper. As a result of analysis, I-square value is more than 75% in four hypotheses. Therefore, the null hypothesis that the size of the population effect is the same for all studies was rejected. The reason for the heterogeneity is that the research characteristics such as the distribution of the respondents, the study conditions, the study period, and the study area are different. In this case, a summary statistic of the individual studies that can be classified according to the characteristics of the research is needed to analyze the effect size difference. However, individual studies do not provide a summary statistic that can classify the effect differences, so it is not possible to analyze the causes of heterogeneity.


연구 과제 주관 기관 : Cheongju University Research Institute of Business and Economics


  1. H. H. Song. (2001). Meta-analysis of medicine, nursing science, social science research. Seoul : Cheongmungag.
  2. L. V. Hedges & I. Olkin. (1983). Regression models in research synthesis, The American Statistician, 37, 137-140.
  3. S. D. Hwang. (2015). Meta-Analysis Using R. Seoul : Hagjisa.
  4. H. Kang. (2015). Statistical Considerations in Meta-Analysis. Hanyang Med Rev 35, Hanyang University College of Medicine, 23-32.
  5. KSA. The core of how to configure and deploy TPM.
  6. Y. A. Jin. (2015). Meta-analysis using Stata. Seoul : Korea University Press.
  7. S. Cohen & T. A. Will. (1998). Stress, social support, and the buffering hypothesis. Psychological Bulletin, 2, 310-357
  8. Y. W. OH & K. C. LEE. (2005). The Study on the Utilization of TPM program Affecting the Productivity Increase. Korean Operations Research And Management Society Conference Proceedings. (pp. 961-966). Seoul : Korean Operations Research And Management Society.
  9. S. K. Park & C. H. Lee. (2007). A Study on the Contextual Factors Affect on the TPM Application for Loading and Unloading Equipments of Incheon Port, Journal of Korea Port Economic Association, 23(4), 23-47
  10. R. H. Cui & C. E. Kim. (2007). An Empirical Investigation on the Relationship between TPM, TQM and Production Performance of Manufacturing Industry. Journal of the Korea safety management & science, 9(3), 143-151.
  11. R. H. Cui. (2008). An Empirical Study on the Relationship Between TQM, TPM Implementation Factors and Manufacturing Performance-Focus on Chinese Manufacturing Industry-, Doctoral dissertation. Myongji University, Seoul.
  12. J. M. Park. (2009). The Effect of TPM Activities on Business Performance. Master dissertation. Daejeon University, Daejeon.
  13. J. S. Lee. (2011). The Impact of TPM Activities on the Business Performance of Small and Medium Sized Enterprises, Journal of Daehan Academy of Management Information Systems 30(4), 415-440.
  14. K. H. Yeon. (2012). Impacts of the TPM Activity Factor on Corporate's Performances. Journal of the Korea Contents Association, 12(1), 476-484.
  15. H. M. Yang (2013). Impacts of TPM Activities on Management Performance in Small-medium Sized Manufacturing Firms. Doctoral dissertation. Honam University, Gwangju.
  16. T. K. Kim. Objective Research on How TPM Key Factor Affects Facility Efficiency - Focus on "B" Small Automobile Components Enterprise. Master dissertation. Seokeong University, Seoul.
  17. S. D. Hwang. (2016). Meta-Analysis. Seoul : Hagjisa.