DOI QR코드

DOI QR Code

Improved Lung and Pulmonary Vessels Segmentation and Numerical Algorithms of Necrosis Cell Ratio in Lung CT Image

흉부 CT 영상에서 개선된 폐 및 폐혈관 분할과 괴사 세포 비율의 수치적 알고리즘

  • Cho, Joon-Ho (Department of Electronics Convergence Engineering, Wonkwang University) ;
  • Moon, Sung-Ryong (Department of Electronic Engineering, Wonkwang University)
  • 조준호 (원광대학교 전자융합공학과) ;
  • 문성룡 (원광대학교 전자공학과)
  • Received : 2017.12.04
  • Accepted : 2018.02.20
  • Published : 2018.02.28

Abstract

We proposed a numerical calculation of the proportion of necrotic cells in pulmonary segmentation, pulmonary vessel segmentation lung disease site for diagnosis of lung disease from chest CT images. The first step is to separate the lungs and bronchi by applying a three-dimensional labeling technique from a chest CT image and a three-dimensional region growing method. The second step is to divide the pulmonary vessels by applying the rate of change using the first order polynomial regression, perform noise reduction, and divide the final pulmonary vessels. The third step is to find a disease prediction factor in a two-step image and calculate the proportion of necrotic cells.

Keywords

Lung;Necrosis Cell;Region Growing Method;Rolling Ball Algorithm;Vessel

Acknowledgement

Supported by : Wonkwnag University

References

  1. D. Bartz, D. Mayer, J. Fischer & S. Ley.(2003). Hybrid Segmentation and Exploration of the Human Lungs. Proc. of IEEE Visualization, 14(3), 177-184. DOI:10.1109/VISUAL.2003.1250370 https://doi.org/10.1109/VISUAL.2003.1250370
  2. Y. Masutani, H. MacMahon & K. Doi.(2002). Computerized Detection of Pulmonary Embolism in Spiral CT Angiography Based on Volumetric Image Analysis. IEEE Transactions on Medical Imaging. 21(12), 1517-1523. DOI: 10.1109/TMI.2002.806586 https://doi.org/10.1109/TMI.2002.806586
  3. J. Pu, D. S. Paik, X. Meng, J. E. Roos & G. D. Rubin.(2011). Shape break and-repair strategy and its application to automated medical image segmentation. IEEE Transactions on Visualization and Computer Graphics. 17(1), 115-124. DOI: 10.1109/TVCG.2010.56 https://doi.org/10.1109/TVCG.2010.56
  4. A. Jemal, T. Murray, E. Ward, A. Samuels, R. C. Tiwari, A. Ghafoor, E.J. Feuer & M. J. Thun. (2005). Cancer statistics 2005. A Cancer Journal for Clinicians. 55(1), 10-30. DOI: 10.3322/canjclin.55.1.10 https://doi.org/10.3322/canjclin.55.1.10
  5. J. Wang, Q. Li & F. Li.(2009). Automated segmentation of lungs with severe interstitial lung disease in CT. Med. Phys. 36(10), 4592-4599. DOI: 10.1118/1.3222872 https://doi.org/10.1118/1.3222872
  6. I. Sluimer, M Prokop. & B. van Ginneken. (2005). Toward automated segmentation of the pathological lung in CT. IEEE Trans. Med. Imag. 24(8), 1025-1038. DOI: 10.1109/TMI.2005.851757 https://doi.org/10.1109/TMI.2005.851757
  7. Y. H. Shi, F. H. Qi, Z. Xue, L. Y. Chen, K. K Ito, H. Matsuo & D. Shen.(2008). Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE trans. Med. Imag. 27(4), 481-494. DOI: 10.1109/TMI.2007.908130 https://doi.org/10.1109/TMI.2007.908130
  8. A. A. Farag & J. H. Graham. (2013). A novel approach for lung nodules segmentation in chest CT using Levelsets. IEEE Trans image processing. 22(2), 5202-5213. DOI: 10.1109/TIP.2013.2282899 https://doi.org/10.1109/TIP.2013.2282899
  9. M. Rogers & J. Graham.(2002). Robust active shape model search. Proceedings of the European Conference on Computer Vision. 1(1), 517-530. DOI : https://doi.org/10.1007/3-540-47979-1_35 https://doi.org/10.1007/3-540-47979-1_35
  10. M. J. Shin & D. Y. Kim.(2012). Pulmonary vascular Segmentation and Refinement On the CT Scans. The Journal of the Korean Institute of Information and Communication Engineering. 16(3), 591-597. DOI : 10.6109/jkiice.2012.16.3.591 https://doi.org/10.6109/jkiice.2012.16.3.591
  11. S. H. Lee et al.(2014). A Study on the Usefulness of 3D Imaging in Micro-CT for Observing the Microstructure of Mice. Journal of Digital Convergence. 12(3), 367-375. DOI: 10.14400/JDC.2014.12.3.367 https://doi.org/10.14400/JDC.2014.12.3.367
  12. X1. Meng, Y. Qiang, S. Zhu, C. Fuhrman , JM. Siegfried & J. Pu.(2012). Illustration of the obstacles in computerized lung segmentation using examples. Med Phys, 39(8), 498-491. DOI: 10.1118/1.4737023 https://doi.org/10.1118/1.4737023
  13. M. S. Brown, M. F. McNitt-Gray, N. J. Mankovich, J. G. Goldin, J. Hiller, L. S. Wilson & D. R. Aberle.(1997). Method for segmenting chest CT image data using an anatomic model: Preliminary results. IEEE Trans. Medical Imaging. 16(6). 828-839. DOI: 10.1109/42.650879 https://doi.org/10.1109/42.650879
  14. S. Hu, E. A. Hoffman & J. M. Reinhardt.(2001). Accurate Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images. IEEE Transactions on Medical Imaging. 20(6). 490-498. DOI: 10.1109/42.929615 https://doi.org/10.1109/42.929615
  15. T. Kitasaka, K. Mori, J. Hasegawa & J. Toriwaki. (2003). Lung area extraction from 3-D chest X-ray CT images using a shape model generated bya variable Bezier surface. Syst. Comput. Jpn.. 34(4), 60-71. DOI: 10.1002/scj.1201 https://doi.org/10.1002/scj.1201
  16. Y.Y.Yim, H. L. Hong & Y. G. Shin. (2005). Automatic Lung Segmentation using Hybrid Approach. Journal of KIISE : Software and Applications. 32(7), 625-635. DOI: 10.1118/1.3147146