AR monitoring technology for medical convergence

증강현실 모니터링 기술의 의료융합

  • Lee, Kyung Sook (Division of Supercomputing, Korea Institute of Science and Technology Information) ;
  • Lim, Wonbong (Department of Premedical Program, School of Medicine, Chosun University) ;
  • Moon, Young Lae (Department of Orthopaedic Surgery, Chosun University Hospital)
  • 이경숙 (한국과학기술정보연구원 슈퍼컴퓨팅본부) ;
  • 임원봉 (조선대학교 의과대학 의예과) ;
  • 문영래 (조선대학교병원 정형외과)
  • Received : 2017.12.13
  • Accepted : 2018.02.20
  • Published : 2018.02.28


The augmented reality(AR) technology enables to acquire various image information at the same time by combining virtual image information with the user's viewpoint. These AR technologies have been used to visualize patients' organs and tissues during surgery and diagnosis in the fields of Image-Guide Operation, Surgical Training, and Image Diagnosis by medical convergence, and provides the most effective surgical methods. In this paper, we study the technical features and application methods of each element technology for medical fusion of AR technology. In the AR technology for medical convergence, display, marker recognition and image synthesis interface technology is essential for efficient medical image. Such AR technology is considered to be a way to drastically improve current medical technology in the fields of image guide surgery, surgical education, and imaging diagnosis.


Supported by : Chosun University Hospital


  1. P. Sallomi. (2016). Technology, Media & Telecommunications Predictions : Deloitte,
  2. H. Matthias. (2008). Surgical scene generation for virtual reality-based training in medicine, Springer. DOI :
  3. D. Bartz. (2005). Virtual Endoscopy in research and clinical practice : Computer Graphics Forum, DOI: 10.1111/j.1467-8659.2005.00831.x
  4. S. H. Kim. (2015). Development of the 3D Hair Style Simulator using Augmented Reality, Journal of Digital Convergence, 13(1), 249-255. DOI : 10.14400/JDC.2015.13.1.249
  5. S. H. Kim. (2013). Development of the 3D Virtual Fitting Room Simulator using Augmented Reality, Journal of Digital Convergence, 11(11), 449-454. DOI : 10.14400/JDPM.2013.11.11.449
  6. J. H. Yoon, T. J. Ji, J. Yoon, & H. G. Kim. (2017). A Convergence Study on the 5-axis Machining Technology using the DICOM Image of the Humerus Bone, Journal of the Korea Convergence Society, 8(11), 115-121.
  7. H. J. Kim. & J. Yoon. (2017). Convergence Comparison of Metal Artifact Reduction Rate for Pacemaker Insertion of CT Imaging Phantoms in the Raw Data with MAR Algorithm, Journal of the Korea Convergence Society, 8(1), 43-49. DOI : 10.15207/JKCS.2017.8.1.043
  8. K. B. Kim & E. H. Goo. (2016). Image Evaluation for A Kind of Patient Fixing Pad in 64 Multi-Channel Detector Computed Tomograph, Journal of the Korea Convergence Society, 7(1), 89-95. DOI : 10.15207/JKCS.2016.7.1.089
  9. H. M. Lee. M. Billinghurst & W. T. Woo. (2011). Two-handed tangible interaction techniques for composing augmented blocks, Virtual Reality, 15(2-3), 133, DOI : 10.1007/s10055-010-0163-9
  10. C. G. Kang. (2011). Augmented Reality Content Technologies and Applications for Implementing Quartz Virtual Reality, Journal of Electrical Engineering, 3B(6).
  11. A. O. Alkhamisi & M. M. Monowar (2013). Rise of Augmented Reality: Current and Future Application Areas, Computer Science & Communications, 1(4), 25-34. DOI : 10.4236/ijids.2013.14005
  12. J. Kim, J. Kim, J. Kim, K. Kim & S. Yoo. (2012). The Development of Image Processing System for Medical Robot Remote Application. Progress in Medical Physics, 23(4), 239-251
  13. Vertegaal, R., & Poupyrev, I. (2008). Organic User Interfaces ACM Communications, 51(6), 48-55. DOI : 10.1145/1349026.1349037
  14. K. Park & J. Chung. (2014). A study on the Image Augmented Reality Card using Augmented Reality. Journal of Digital Convergence, 12(8), 467-474. DOI : 10.14400/JDC.2014.12.8.467
  15. M. Lee. (2004). Augmented Reality Technology Research Trends and Prospects, Korea Information Processing Society, 11(1).
  16. H. Yoon, & W. Woo. (2008). Design and Implementation of a Universal Appliance Controller Based on Selective Interaction Modes, IEEE Transactions on Consumer Electronics, 54(4), 1722-1729. DOI : 10.1109/TCE.2008.4711226