DOI QR코드

DOI QR Code

YJI-7 Suppresses ROS Production and Expression of Inflammatory Mediators via Modulation of p38MAPK and JNK Signaling in RAW 264.7 Macrophages

  • Received : 2016.12.15
  • Accepted : 2017.01.23
  • Published : 2018.03.01

Abstract

Chalcone, (2E)-1,3-Diphenylprop-2-en-1-one, and its synthetic derivatives are known to possess anti-oxidative and anti-inflammatory properties. In the present study, we prepared a novel synthetic chalcone compound, (E)-1-(4-hydroxyphenyl)-3-(2-(trifluoromethoxy)phenyl)prop-2-en-1-one name (YJI-7), and investigated its inhibitory effects on endotoxin-stimulated production of reactive oxygen species (ROS) and expression of inflammatory mediators in macrophages. We demonstrated that treatment of RAW 264.7 macrophages with YJI-7 significantly suppressed lipopolysaccharide (LPS)-stimulated ROS production. We also found that YJI-7 substantially decreased NADPH oxidase activity stimulated by LPS, indicating that YJI-7 regulates ROS production via modulation of NADPH oxidase in macrophages. Furthermore, YJI-7 strongly inhibited the expression of a number of inflammatory mediators in a gene-selective manner, suggesting that YJI-7 possesses potent anti-inflammatory properties, as well as anti-oxidative activity. In continuing experiments to investigate the mechanisms that could underlie such biological effects, we revealed that YJI-7 suppressed phosphorylation of p38MAPK and JNK stimulated by LPS, whereas no significant effect on ERK was observed. Furthermore, LPS-stimulated production of ROS, activation of NADPH oxidase and expression of inflammatory mediators were markedly suppressed by treatment with selective inhibitor of p38MAPK (SB203580) and JNK (SP600125). Taken together, these results demonstrated that YJI-7, a novel synthetic chalcone derivative, suppressed LPS-stimulated ROS production via modulation of NADPH oxidase and diminished expression of inflammatory mediators, at least in part, via down-regulation of p38MAPK and JNK signaling in macrophages.

Acknowledgement

Supported by : Yeungnam University

References

  1. Ben-Baruch, A., Michiel, D. F. and Oppenheim, J. J. (1995) Signals and receptors involved in recruitment of inflammatory cells. J. Biol. Chem. 270, 11703-11706. https://doi.org/10.1074/jbc.270.20.11703
  2. Coussens, L. M. and Werb, Z. (2002) Inflammation and cancer. Nature 420, 860-867. https://doi.org/10.1038/nature01322
  3. Eikelenboom, P., Zhan, S. S., van Gool, W. A. and Allsop, D. (1994) Inflammatory mechanisms in Alzheimer's disease. Trends Pharmacol. Sci. 15, 447-450. https://doi.org/10.1016/0165-6147(94)90057-4
  4. Fischer, R. and Maier, O. (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid. Med. Cell. Longev. 2015, 610813.
  5. Forejtnikova, H., Lunerova, K., Kubinova, R., Jankovska, D., Marek, R., Kares, R., Suchy, V., Vondracek, J. and Machala, M. (2005) Chemoprotective and toxic potentials of synthetic and natural chalcones and dihydrochalcones in vitro. Toxicology 208, 81-93. https://doi.org/10.1016/j.tox.2004.11.011
  6. Gordon, S. (1998) The role of the macrophage in immune regulation. Res. Immunol. 149, 685-688. https://doi.org/10.1016/S0923-2494(99)80039-X
  7. Hermes-Lima, M., Moreira, D. C., Rivera-Ingraham, G. A., Giraud-Billoud, M., Genaro-Mattos, T. C. and Campos, E. G. (2015) Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radic. Biol. Med. 89, 1122-1143. https://doi.org/10.1016/j.freeradbiomed.2015.07.156
  8. Holmstrom, K. M. and Finkel, T. (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411-421. https://doi.org/10.1038/nrm3801
  9. Kaufmann, K. B., Gothwal, M., Schallner, N., Ulbrich, F., Rucker, H., Amslinger, S. and Goebel, U. (2016) The anti-inflammatory effects of E-alpha-(p-methoxyphenyl)-2',3,4,4'-tetramethoxychalcone are mediated via HO-1 induction. Int. Immunopharmacol. 35, 99-110. https://doi.org/10.1016/j.intimp.2016.03.018
  10. Kim, M. J., Kadayat, T., Kim, D. E., Lee, E. S. and Park, P. H. (2014) TI-I-174, a synthetic chalcone derivative, suppresses nitric oxide production in murine macrophages via heme oxygenase-1 induction and inhibition of AP-1. Biomol. Ther. (Seoul) 22, 390-399. https://doi.org/10.4062/biomolther.2014.062
  11. Kim, M. J., Kadayat, T., Um, Y. J., Jeong, T. C., Lee, E. S. and Park, P. H. (2015) Inhibitory effect of 3-(4-Hydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, a chalcone derivative on MCP-1 expression in macrophages via inhibition of ROS and Akt signaling. Biomol. Ther. (Seoul) 23, 119-127. https://doi.org/10.4062/biomolther.2014.127
  12. Kontogiorgis, C., Mantzanidou, M. and Hadjipavlou-Litina, D. (2008) Chalcones and their potential role in inflammation. Mini Rev. Med. Chem. 8, 1224-1242.
  13. Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., Huang, T. T., Bos, J. L., Medema, R. H. and Burgering, B. M. (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316-321. https://doi.org/10.1038/nature01036
  14. Lam, G. Y., Huang, J. and Brumell, J. H. (2010) The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Semin. Immunopathol. 32, 415-430. https://doi.org/10.1007/s00281-010-0221-0
  15. Lee, S. H., Zhao, Y. Z., Park, E. J., Che, X. H., Seo, G. S. and Sohn, D. H. (2011) 2',4',6'-Tris(methoxymethoxy) chalcone induces apoptosis by enhancing Fas-ligand in activated hepatic stellate cells. Eur. J. Pharmacol. 658, 9-15. https://doi.org/10.1016/j.ejphar.2011.01.067
  16. Li, X. N., Song, J., Zhang, L., LeMaire, S. A., Hou, X., Zhang, C., Coselli, J. S., Chen, L., Wang, X. L., Zhang, Y. and Shen, Y. H. (2009) Activation of the AMPK-FOXO3 pathway reduces fatty acidinduced increase in intracellular reactive oxygen species by up-regulating thioredoxin. Diabetes 58, 2246-2257. https://doi.org/10.2337/db08-1512
  17. Mahapatra, D. K., Bharti, S. K. and Asati, V. (2015) Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem. 98, 69-114. https://doi.org/10.1016/j.ejmech.2015.05.004
  18. Matos, M. J., Vazquez-Rodriguez, S., Uriarte, E. and Santana, L. (2015) Potential pharmacological uses of chalcones: a patent review (from June 2011 - 2014) Expert Opin. Ther. Pat. 25, 351-366. https://doi.org/10.1517/13543776.2014.995627
  19. Millar, T. M., Phan, V. and Tibbles, L. A. (2007) ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment. Free Radic. Biol. Med. 42, 1165-1177. https://doi.org/10.1016/j.freeradbiomed.2007.01.015
  20. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. and Malik, A. B. (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126-1167.
  21. Nepal, S., Kim, M. J., Hong, J. T., Kim, S. H., Sohn, D. H., Lee, S. H., Song, K., Choi, D. Y., Lee, E. S. and Park, P. H. (2015) Autophagy induction by leptin contributes to suppression of apoptosis in cancer cells and xenograft model: involvement of p53/FoxO3A axis. Oncotarget 6, 7166-7181.
  22. Nepal, S. and Park, P. H. (2013) Activation of autophagy by globular adiponectin attenuates ethanol-induced apoptosis in HepG2 cells: involvement of AMPK/FoxO3A axis. Biochim. Biophys. Acta 1833, 2111-2125. https://doi.org/10.1016/j.bbamcr.2013.05.013
  23. Nomura, J., Busso, N., Ives, A., Tsujimoto, S., Tamura, M., So, A. and Yamanaka, Y. (2013) Febuxostat, an inhibitor of xanthine oxidase, suppresses lipopolysaccharide-induced MCP-1 production via MAPK phosphatase-1-mediated inactivation of JNK. PLoS ONE 8, e75527. https://doi.org/10.1371/journal.pone.0075527
  24. Reddy, D. B. and Reddanna, P. (2009) Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-${\kappa}B$ and MAPK activation in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 381, 112-117. https://doi.org/10.1016/j.bbrc.2009.02.022
  25. Roebuck, K. A. (1999) Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-${\kappa}B$ (review). Int. J. Mol. Med. 4, 223-230.
  26. Rojkind, M., Dominguez-Rosales, J. A., Nieto, N. and Greenwel, P. (2002) Role of hydrogen peroxide and oxidative stress in healing responses. Cell. Mol. Life Sci. 59, 1872-1891. https://doi.org/10.1007/PL00012511
  27. Sabzevari, O., Galati, G., Moridani, M. Y., Siraki, A. and O'Brien, P. J. (2004) Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chem. Biol. Interact. 148, 57-67. https://doi.org/10.1016/j.cbi.2004.04.004
  28. Salih, D. A. and Brunet, A. (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr. Opin. Cell Biol. 20, 126-136. https://doi.org/10.1016/j.ceb.2008.02.005
  29. Serhan, C. N. and Savill, J. (2005) Resolution of inflammation: the beginning programs the end. Nat. Immunol. 6, 1191-1197. https://doi.org/10.1038/ni1276
  30. Torres, M. and Forman, H. J. (2003) Redox signaling and the MAP kinase pathways. BioFactors 17, 287-296. https://doi.org/10.1002/biof.5520170128
  31. Tse, G., Yan, B. P., Chan, Y. W., Tian, X. Y. and Huang, Y. (2016) Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front. Physiol. 7, 313.
  32. Yadav, V. R., Prasad, S., Sung, B. and Aggarwal, B. B. (2011) The role of chalcones in suppression of NF-${\kappa}B$-mediated inflammation and cancer. Int. Immunopharmacol. 11, 295-309. https://doi.org/10.1016/j.intimp.2010.12.006
  33. Zhang, Z. H., Yu, L. J., Hui, X. C., Wu, Z. Z., Yin, K. L., Yang, H. and Xu, Y. (2014) Hydroxy-safflor yellow A attenuates $A{\beta}_{1-42}$-induced inflammation by modulating the JAK2/STAT3/NF-${\kappa}B$ pathway. Brain Res. 1563, 72-80. https://doi.org/10.1016/j.brainres.2014.03.036

Cited by

  1. Design and Synthesis of Fluorinated and/or Hydroxylated 2-Arylidene-1-indanone Derivatives as an Inhibitor of LPS-stimulated ROS Production in RAW 264.7 Macrophages with Structure-Activity Relationship Study pp.12295949, 2018, https://doi.org/10.1002/bkcs.11618
  2. ZFP36L1 and AUF1 Induction Contribute to the Suppression of Inflammatory Mediators Expression by Globular Adiponectin via Autophagy Induction in Macrophages vol.26, pp.5, 2018, https://doi.org/10.4062/biomolther.2018.078