DOI QR코드

DOI QR Code

A study on application of high strength steel SM570 in bridge piers with stiffened box section under cyclic loading

  • Kang, Lan (School of Civil Engineering and Transportation, South China University of Technology) ;
  • Suzuki, Motoya (Department of Civil Engineering, Meijo University) ;
  • Ge, Hanbin (Department of Civil Engineering, Meijo University)
  • Received : 2017.09.29
  • Accepted : 2017.12.20
  • Published : 2018.03.10

Abstract

Although a lot of experimental and analytical investigations have been carried out for steel bridge piers made of SS400 and SM490, the formulas available for SS400 and SM490 are not suitable for evaluating ultimate load and deformation capacities of steel bridge piers made of high strength steel (HSS) SM570. The effect of various parameters is investigated in this paper, including plate width-to-thickness ratio, column slenderness ratio and axial compression force ratio, on the ultimate load and deformation capacities of steel bridge box piers made of SM570 steel subjected to cyclic loading. The elasto-plastic behavior of the steel bridge piers under cyclic loads is simulated through plastic large deformation finite element analysis, in which a modified two-surface model (M2SM) including cyclic hardening is employed to trace the material nonlinearity. An extensive parametric study is conducted to study the influences of structural parameters on the ultimate load and deformation capacities. Based on these analytical investigations, new formulas for predicting ultimate load and deformation capacities of steel bridge piers made of SM570 are proposed. This study extends the ultimate load and deformation capacities evaluation of steel bridge piers from SS400, SM490 steels to SM570 steel, and provides some useful suggestions.

Keywords

steel bridge pier;ultimate load;deformation capacity;high strength steel;two-surface model

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Aoki, T. and Susantha, K.A.S. (2005), "Seismic performance of rectangular-shaped steel piers under cyclic loading", J. Struct. Eng. ASCE, 131(2), 240-249. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(240)
  2. Japan Road Association (2002), Specifications for highway bridges, Part V, seismic design, Tokyo, Japan.
  3. Ban, H., Shi, G., Shi, Y. and Bradford, M.A. (2013a), "Experimental investigation of the overall buckling behaviour of 960 MPa high strength steel columns", J. Constr. Steel Res., 88, 256-266. https://doi.org/10.1016/j.jcsr.2013.05.015
  4. Ban, H.Y., Shi, G., Bai, Y., Shi, Y.J. and Wang, Y.Q. (2013b), "Residual stress of 460 MPa high strength steel welded I section: Experimental investigation and modeling", Int. J. Steel Struct., 13(4), 691-705. https://doi.org/10.1007/s13296-013-4010-1
  5. Ban, H.Y., Shi, G., Shi, Y.J. and Bradford, M.A. (2013c), "Experimental investigation of the overall buckling behaviour of 960 MPa high strength steel columns", J. Constr. Steel Res., 88, 256-266. https://doi.org/10.1016/j.jcsr.2013.05.015
  6. Bradford, M.A. and Liu, X.P. (2016), "Flexural-torsional buckling of high-strength steel beams", J. Constr. Steel Res., 124, 122-131. https://doi.org/10.1016/j.jcsr.2016.05.009
  7. Cao, K., Guo, Y.J. and Zeng, D.W. (2015), "Buckling behavior of large-section and 420 MPa high-strength angle steel columns", J. Constr. Steel Res., 111, 11-20. https://doi.org/10.1016/j.jcsr.2015.03.014
  8. Chen, S.W., Chen, X., Wang, Y.B., Lu, Z.L. and Li, G.Q. (2016), "Experimental and numerical investigations of Q690D Hsection columns under lateral cyclic loading", J. Constr. Steel Res., 121, 268-281. https://doi.org/10.1016/j.jcsr.2016.02.015
  9. Chiew, S.P., Jiang, J. and Lee, C.K. (2012), "Residual stress investigation of welded high strength steel box T-joints", Elect. Measur. Instru. Measur., 177, 141-147.
  10. Coelho, A.M.G. and Bijlaard, F.S.K. (2010), "Finite element evaluation of the strength behaviour of high-strength steel column web in transverse compression", Steel Compos. Struct., Int. J., 10(5), 385-414.
  11. Ferrario, F., Iori, F., Pucinotti, R. and Zandonini, R. (2016), "Seismic performance assessment of concentrically braced steel frame buildings with high strength tubular steel columns", J. Constr. Steel Res., 121, 427-440. https://doi.org/10.1016/j.jcsr.2016.03.009
  12. Gao, L., Sun, H., Jin, F. and Fan, H. (2009), "Load-carrying capacity of high-strength steel box-sections I: Stub columns", J. Constr. Steel Res., 65(4), 918-924. https://doi.org/10.1016/j.jcsr.2008.07.002
  13. Ge, H.B. and Kang, L. (2012), "A damage index based evaluation method for predicting the ductile crack initiation in steel structures", J. Earthq. Eng., 16(5), 623-643. https://doi.org/10.1080/13632469.2012.676231
  14. Ge, H.B., Gao, S.B. and Usami, T. (2000), "Stiffened steel box columns. Part 1: Cyclic behaviour", Earthq. Eng. Struct. Dyn., 29(11), 1691-1706. https://doi.org/10.1002/1096-9845(200011)29:11<1691::AID-EQE989>3.0.CO;2-U
  15. Gkantou, M., Theofanous, M., Wang, J., Baniotopoulos, C. and Gardner, L. (2017), "Behaviour and design of high-strength steel cross-sections under combined loading", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 170(11), 841-854. https://doi.org/10.1680/jstbu.16.00114
  16. Guo, W., Crowther, D., Francis, J.A., Thompson, A., Liu, Z. and Li, L. (2015), "Microstructure and mechanical properties of laser welded S960 high strength steel", Mater. Des., 85, 534-548. https://doi.org/10.1016/j.matdes.2015.07.037
  17. Joo, H.S., Moon, J., Sung, I.-H. and Lee, H.-E. (2015), "Moment redistribution of continuous composite I-girder with high strength steel", Steel Compos. Struct., Int. J., 18(4), 873-887. https://doi.org/10.12989/scs.2015.18.4.873
  18. Khan, M., Paradowska, A., Uy, B., Mashiri, F. and Tao, Z. (2016), "Residual stresses in high strength steel welded box sections", J. Constr. Steel Res., 116, 55-64. https://doi.org/10.1016/j.jcsr.2015.08.033
  19. Kumar, S. and Usami, T. (1996), "Damage evaluation in steel box columns by cyclic loading tests", J. Struct. Eng. JSCE, 122(6), 626-634. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(626)
  20. Li, T.J., Li, G.Q., Chan, S.L. and Wang, Y.B. (2016a), "Behavior of Q690 high-strength steel columns: Part 1: Experimental investigation", J. Constr. Steel Res., 123, 18-30. https://doi.org/10.1016/j.jcsr.2016.03.026
  21. Li, T.J., Liu, S.W., Li, G.Q., Chan, S.L. and Wang, Y.B. (2016b), "Behavior of Q690 high-strength steel columns: Part 2: Parametric study and design recommendations", J. Constr. Steel Res., 122, 379-394. https://doi.org/10.1016/j.jcsr.2016.03.027
  22. Li, D., Uy, B., Patel, V. and Aslani, F. (2017), "Analysis and design of demountable embedded steel column base connections", Steel Compos. Struct., Int. J., 23(3), 303-315. https://doi.org/10.12989/scs.2017.23.3.303
  23. Liao, F.-Y., Han, L.-H., Tao, Z. and Rasmussen, K.J.R. (2017), "Experimental behavior of concrete-filled stainless steel tubular columns under cyclic lateral loading", J. Struct. Eng., 143(4), 04016129.
  24. Ma, J.-L., Chan, T.-M. and Young, B. (2016), "Experimental investigation of cold-formed high strength steel tubular beams", Eng. Struct., 126, 200-209. https://doi.org/10.1016/j.engstruct.2016.07.027
  25. Mamaghani, I.H.P., Shen, C., Mizuno, E. and Usami, T. (1995), "Cyclic Behavior of Structural Steels. I: Experiments", J. Eng. Mech. ASCE, 121(11), 1158-1164. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:11(1158)
  26. Nakamura, S., Yasunami, H., Kobayashi, B., Nakagawa, T. and Mizutani, S. (1997), "An experimental study on the seismic performance of steel bridge piers with less-stiffened and compact sized section", Proceedings of Nonlinear Numerical Analysis and Seismic Design of Steel Bridge Piers, pp. 331-338.
  27. Nakashima, M. and Liu, D.W. (2005), "Instability and complete failure of steel columns subjected to cyclic loading", J. Eng. Mech. ASCE, 131(6), 559-567. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:6(559)
  28. Shen, C., Mamaghani, I.H.P., Mizuno, E. and Usami, T. (1995), "Cyclic behavior of structural steels. II: Theory", J. Eng. Mech. ASCE, 121(11), 1165-1172. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:11(1165)
  29. Shi, G., Liu, Z., Ban, H.Y., Zhang, Y., Shi, Y.J. and Wang, Y.Q. (2012), "Tests and finite element analysis on the local buckling of 420 MPa steel equal angle columns under axial compression", Steel Compos. Struct., Int. J., 12(1), 31-51. https://doi.org/10.12989/scs.2012.12.1.031
  30. Shi, G., Zhou, W.J., Bai, Y. and Liu, Z. (2014), "Local buckling of steel equal angle members with normal and high strengths", Int. J. Steel Struct., 14(3), 447-455. https://doi.org/10.1007/s13296-014-3002-0
  31. Shi, G., Zhou, W.J. and Lin, C.C. (2015), "Experimental Investigation on the Local Buckling Behavior of 960 MPa High Strength Steel Welded Section Stub Columns", Adv. Struct. Eng., 18(3), 423-437. https://doi.org/10.1260/1369-4332.18.3.423
  32. Usami, T. and Ge, H.B. (1998), "Cyclic behavior of thin-walled steel structures--numerical analysis", Thin-Wall. Struct., 32(1-3), 41-80.
  33. Usami, T., Gao, S.B. and Ge, H.B. (2000), "Stiffened steel box columns. Part 2: Ductility evaluation", Earthq. Eng. Struct. Dyn., 29(11), 1707-1722. https://doi.org/10.1002/1096-9845(200011)29:11<1707::AID-EQE990>3.0.CO;2-7
  34. Wang, Z.F. and Yamao, T. (2011), "Ultimate strength and ductility of stiffened steel tubular bridge piers", Int. J. Steel Struct., 11(1), 81-90. https://doi.org/10.1007/S13296-011-1007-5
  35. Wang, J.J., Shi, G. and Shi, Y.J. (2014a), "Experimental research on behavior of 460 MPa high strength steel I-section columns under cyclic loading", Earthq. Eng. Eng. Vib., 13(4), 611-622. https://doi.org/10.1007/s11803-014-0267-4
  36. Wang, Y.B., Li, G.Q., Cui, W. and Chen, S.W. (2014b), "Seismic behavior of high strength steel welded beam-column members", J. Constr. Steel Res., 102, 245-255. https://doi.org/10.1016/j.jcsr.2014.07.015
  37. Wang, Y.B., Li, G.Q., Cui, W., Chen, S.W. and Sun, F.F. (2015), "Experimental investigation and modeling of cyclic behavior of high strength steel", J. Constr. Steel Res., 104, 37-48. https://doi.org/10.1016/j.jcsr.2014.09.009
  38. Wang, J., Afshan, S., Gkantou, M., Theofanous, M., Wang, J. and Gardner, L. (2017a), "Flexural buckling of hot-finished highstrength steel SHS and RHS columns", J. Struct. Eng., 143(6), 04017028. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001763
  39. Yan, J.-B., Liew, J.Y.R., Zhang, M.-H. and Wang, J.-Y. (2014), "Mechanical properties of normal strength mild steel and high strength steel S690 in low temperature relevant to Arctic environment", Mater. Des., 61, 150-159. https://doi.org/10.1016/j.matdes.2014.04.057
  40. Zheng, Y., Usami, T. and Ge, H.B. (2000), "Ductility evaluation procedure for thin-walled steel structures", J. Struct. Eng. ASCE, 126(11), 1312-1319. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1312)