DOI QR코드

DOI QR Code

Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory

  • Loghman, Abbas (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan) ;
  • Faegh, Reza K. (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan) ;
  • Arefi, Mohammad (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2017.07.29
  • Accepted : 2017.12.05
  • Published : 2018.03.10

Abstract

In this paper the time-dependent creep analysis of a thick-walled FG cylinder with finite length subjected to axisymmetric mechanical and thermal loads are presented. First order shear deformation theory (FSDT) is used for description of displacement components. Inner and outer temperatures and outer pressure are considered as thermo-mechanical loadings. Both thermal and mechanical loadings are assumed variable along the axial direction using the sinusoidal distribution. To find temperature distribution, two dimensional heat transfer equation is solved using the required boundary conditions. The energy method and Euler equations are employed to reach final governing equations of the cylinder. After determination of elastic stresses and strains, the creep analysis can be performed based on the Yang method. The results of this research indicate that the boundaries have important effects on the responses of the cylinder. The effect of important parameters of this analysis such as variable loading, non-homogeneous index of functionally graded materials and time of creep is studied on the behaviors of the cylinder.

Keywords

creep analysis;first order shear deformation theory;functionally graded materials;cylindrical shell

References

  1. Abdelbaki, C., Tounsi, A., Habib, H. and Hassan, S. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  2. Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Latin Am. J. Solids. Struct., 11(11), 2073-2092. https://doi.org/10.1590/S1679-78252014001100009
  3. Arefi, M. and Bidgoli, E.M.R. (2017), "Elastic solution of a constrained FG short cylinder under axially variable pressure", J. Inst. Eng. (Ind): Series C., 98(3), 267-276. https://doi.org/10.1007/s40032-016-0269-2
  4. Arefi, M. and Khoshgoftar, M.J. (2014), "Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell", Smart. Struct. Syst., Int. J., 14(2), 225-246. https://doi.org/10.12989/sss.2014.14.2.225
  5. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454.
  6. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., Int. J., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  7. Arefi, M. and Rahimi, G.H. (2012a), "The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clamped-clamped FG cylinder under mechanical and thermal loads", Int. J. Press. Ves. Pip., 96, 30-37.
  8. Arefi, M. and Rahimi, G.H. (2012b), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika., 18(1), 5-13.
  9. Arefi, M. and Rahimi, G.H. (2012c), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., Int. J., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  10. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., Int. J., 14(2), 225-246. https://doi.org/10.12989/sss.2014.14.2.225
  11. Arefi, M. and Zenkour, A.M. (2016), "Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic face-sheets", Smart Mater. Struct., 25(11), 115040. https://doi.org/10.1088/0964-1726/25/11/115040
  12. Arefi, M. and Zenkour, A.M. (2017a), "Nonlocal electrothermo-mechanical analysis of a sandwich nanoplate containing a Kelvin-Voigt viscoelastic nanoplate and two piezoelectric layers", Acta. Mech., 228(2), 475-493. https://doi.org/10.1007/s00707-016-1716-0
  13. Arefi, M. and Zenkour, A.M. (2017b), "Thermo-electromechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071
  14. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322.
  15. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart Struct. Syst., Int. J., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427
  16. Arefi, M., Abbasi A.R. and Vaziri Sereshk, M.R. (2016a), "Two-dimensional thermoelastic analysis of FG cylindrical shell resting on the Pasternak foundation subjected to mechanical and thermal loads based on FSDT formulation", J. Therm. Stresses., 39(5), 554-570. https://doi.org/10.1080/01495739.2016.1158607
  17. Arefi, M., Faegh, R.K. and Loghman, A. (2016b), "The effect of axially variable thermal and mechanical loads on the 2D thermoelastic response of FG cylindrical shell", J. Therm. Stress., 39(12), 1539-1559. https://doi.org/10.1080/01495739.2016.1217178
  18. Arefi, M., Karroubi, R. and Irani-Rahaghi M. (2016c), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer", Appl. Math. Mech. (Engl Ed.), 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9
  19. Beldjelili, Y., Tounsi, A. and Hassan, S. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  20. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  21. Bouderba, B., Tounsi, A. and Houari, M.S.A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  22. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., Int. J., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  23. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  24. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  25. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  26. Brnic, J., Canadija, M., Turkalj, G., Krscanski, S., Lanc, D., Brcic, M. and Gao, Z. (2016), "Short-time creep, fatigue and mechanical properties of 42CrMo4-Low alloy structural steel", Steel Compos. Struct., Int. J., 22(4), 875-888. https://doi.org/10.12989/scs.2016.22.4.875
  27. Dai, H.L. and Fu, Y.M. (2007), "Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to mechanical load", Int. J. Press. Ves. Pip., 84(3), 132-138. https://doi.org/10.1016/j.ijpvp.2006.10.001
  28. Draiche, K., Tounsi, A. and Hassan, S. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., Int. J., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  29. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595.
  30. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  31. Jabbari, M., Sohrabpour, S. and Eslami, M.R. (2002), "Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads", Int. J. Press. Vessels. Pip., 79(7), 493-497. https://doi.org/10.1016/S0308-0161(02)00043-1
  32. Jabbari, M. and Bahtui, A. and Eslami, M.R. (2009), "Axisymmetric mechanical and thermal stresses in thick short length FGM cylinders", Int. J. Press. Vessels. Pip., 86(5), 296-306. https://doi.org/10.1016/j.ijpvp.2008.12.002
  33. Kelesm, I. and Conker, C. (2011), "Transient hyperbolic heat conduction in thick-walled FGM cylinders and spheres with exponentially-varying properties", Eur. J. Mech. A/Solids, 30(3), 449-455. https://doi.org/10.1016/j.euromechsol.2010.12.018
  34. Keles, I. and Tutuncu, N. (2011), "Exact analysis of axisymmetric dynamic response of functionally graded cylinders (or disks) and spheres", J. Appl. Mech., 78(6), 610-614.
  35. Kheirkhah, S. and Loghman, A. (2015), "Electric potential redistribution due to time-dependent creep in thickwalled FGPM cylinder based on Mendelson method of successive approximation", Struct. Eng. Mech., Int. J., 53(6), 1167-1182. https://doi.org/10.12989/sem.2015.53.6.1167
  36. Khoshgoftar, M.J., Rahimi, G.H. and Arefi, M. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Com., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001
  37. Kraus, H. (1980), Creep Analysis, John Wiley & Sons, New York, USA.
  38. Loghman, A. and Wahab, M.A. (1996), "Creep damage simulation of thick-walled tubes using the ${\theta}$ projection concept", Int. J. Press. Ves. Pip., 67(1), 105-111. https://doi.org/10.1016/0308-0161(94)00175-8
  39. Loghman, A. and Shokouhi, N. (2009), "Creep damage evaluation of thick-walled spheres using a long-term creep constitutive model", J. Mech. Sci. Tech., 23(10), 2577-2582. https://doi.org/10.1007/s12206-009-0631-x
  40. Loghman, A., Ghorbanpour Arani, A., Amir, S. and Vajedi, A. (2010), "Magnetothermoelastic creep analysis of functionally graded cylinders", Int. J. Press. Ves. Pip., 87(7), 389-395. https://doi.org/10.1016/j.ijpvp.2010.05.001
  41. Loghman, A., Askari Kashan, A., Younesi Bidgoli, M., Shajari, A.R. and Ghorbanpour Arani, A. (2013), "Effect of particle content, size and temperature on magnetothermo-mechanical creep behavior of composite cylinders", J. Mech. Sci. Tech., 27(4), 1041-1051. https://doi.org/10.1007/s12206-013-0213-9
  42. Loghman, A., Nasr, M. and Arefi, M. (2017), "Nonsymmetric thermomechanical analysis of a functionally graded cylinder subjected to mechanical, thermal, and magnetic loads", J. Therm. Stress., 40(6), 1-18. https://doi.org/10.1080/01495739.2016.1267955
  43. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  44. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., Int. J., 20(3), 513-543 https://doi.org/10.12989/scs.2016.20.3.513
  45. Moosaie, A. (2016), "A nonlinear analysis of thermal stresses in an incompressible functionally graded hollow cylinder with temperature-dependent material properties", Eur. J. Mech. -A/Solids, 55, 212-220. https://doi.org/10.1016/j.euromechsol.2015.09.005
  46. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383.
  47. Penny, R.K. and Marriott, D.L. (1971), Design for Creep, McGraw-Hill, London and New York, USA.
  48. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300.
  49. Rimrott, F.P.J., Mills, E.J. and Marin, J. (1960), "Prediction of creep failure time for pressure vessels", J. Appl. Mech., 27(2), 303-308. https://doi.org/10.1115/1.3643956
  50. Sahan, M.F. (2015), "Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation", Steel Compos. Struct., Int. J., 18(4), 889-907. https://doi.org/10.12989/scs.2015.18.4.889
  51. Sim, R.G. and Penny, R.K. (1971), "Plane strain creep behavior of thick-walled cylinders", Int. J. Mech. Sci., 13(12), 987-1009. https://doi.org/10.1016/0020-7403(71)90023-3
  52. Tutuncu, N. and Ozturk, M. (2001), "Exact Solution for Stresses in Functionally Graded Pressure Vessels", Compos.: Part B (Eng), 32(8), 683-686.
  53. Xuan, F.Z., Chen, J.J., Wang, Z. and Tu, S.T. (2009), "Timedependent deformation and fracture of multi-material systems at high temperature", Int. J. Press. Ves. Pip., 86(9), 604-615. https://doi.org/10.1016/j.ijpvp.2009.04.013
  54. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  55. Yang, Y.Y. (2000), "Time-dependent stress analysis in functionally graded materials", Int. J. Solid Struct., 37(51), 7593-7608. https://doi.org/10.1016/S0020-7683(99)00310-8
  56. You, L.H., Ou, H. and Zheng, Z.Y. (2007), "Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure", Compos. Struct., 78(2), 285-291. https://doi.org/10.1016/j.compstruct.2005.10.002
  57. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  58. Zenkour, A.M. and Arefi, M. (2017), "Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation", J. Therm. Stress., 40(2), 167-184. https://doi.org/10.1080/01495739.2016.1229146