DOI QR코드

DOI QR Code

Structure and function of vascular endothelial growth factor and its receptor system

  • Park, Seong Ah (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeong, Mi Suk (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Ha, Ki-Tae (Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Centre for Healthy Aging, Pusan National University) ;
  • Jang, Se Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • Received : 2017.12.12
  • Accepted : 2018.01.16
  • Published : 2018.02.28

Abstract

Vascular endothelial growth factor and its receptor (VEGF-VEGFR) system play a critical role in the regulation of angiogenesis and lymphangiogenesis in vertebrates. Each of the VEGF has specific receptors, which it activates by binding to the extracellular domain of the receptors, and, thus, regulates the angiogenic balance in the early embryonic and adult stages. However, de-regulation of the VEGF-VEGFR implicates directly in various diseases, particularly cancer. Moreover, tumor growth needs a dedicated blood supply to provide oxygen and other essential nutrients. Tumor metastasis requires blood vessels to carry tumors to distant sites, where they can implant and begin the growth of secondary tumors. Thus, investigation of signaling systems related to the human disease, such as VEGF-VEGFR, will facilitate the development of treatments for such illnesses.

Keywords

Angiogenesis;Drugs;Signal transduction;Tumor growth and metastasis;Vascular endothelial growth factor (VEGF)

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A and Delbono O (2015) Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 128, 81-93 https://doi.org/10.1042/CS20140278
  2. Birbrair A, Zhang T, Wang ZM et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307, C25-38 https://doi.org/10.1152/ajpcell.00084.2014
  3. Alitalo K and Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1, 219-227 https://doi.org/10.1016/S1535-6108(02)00051-X
  4. Davis S, Aldrich TH, Jones PF et al (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161-1169 https://doi.org/10.1016/S0092-8674(00)81812-7
  5. Ferrara N and Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18, 4-25 https://doi.org/10.1210/edrv.18.1.0287
  6. Heldin CH and Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79, 1283-1316 https://doi.org/10.1152/physrev.1999.79.4.1283
  7. Shibuya M, Ito N and Claesson-Welsh L (1999) Structure and function of vascular endothelial growth factor receptor-1 and -2. Curr Top Microbiol Immunol 237, 59-83
  8. Wang HU, Chen ZF and Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741-753 https://doi.org/10.1016/S0092-8674(00)81436-1
  9. Smith GA, Fearnley GW, Harrison MA, Tomlinson DC, Wheatcroft SB and Ponnambalam S (2015) Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease. J Inherit Metab Dis 38, 753-763 https://doi.org/10.1007/s10545-015-9838-4
  10. Carmeliet P and Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307 https://doi.org/10.1038/nature10144
  11. Shibuya M (2013) Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 153, 13-19 https://doi.org/10.1093/jb/mvs136
  12. Cross MJ, Dixelius J, Matsumoto T and Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28, 488-494 https://doi.org/10.1016/S0968-0004(03)00193-2
  13. Harris AL (2002) Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2, 38-47 https://doi.org/10.1038/nrc704
  14. Fontanella C, Ongaro E, Bolzonello S, Guardascione M, Fasola G and Aprile G (2014) Clinical advances in the development of novel VEGFR2 inhibitors. Ann Transl Med 2, 123
  15. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N and Williams LT (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989-991 https://doi.org/10.1126/science.1312256
  16. Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL and Shows TB (1991) Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6, 1677-1683
  17. Shibuya M and Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312, 549-560 https://doi.org/10.1016/j.yexcr.2005.11.012
  18. Shibuya M (2011) Involvement of Flt-1 (VEGF receptor-1) in cancer and preeclampsia. Proc Jpn Acad Ser B Phys Biol Sci 87, 167-178 https://doi.org/10.2183/pjab.87.167
  19. Iyer S, Darley PI and Acharya KR (2010) Structural insights into the binding of vascular endothelial growth factor-B by VEGFR-1(D2): recognition and specificity. J Biol Chem 285, 23779-23789 https://doi.org/10.1074/jbc.M110.130658
  20. Davis-Smyth T, Chen H, Park J, Presta LG and Ferrara N (1996) The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J 15, 4919-4927
  21. Tanaka K, Yamaguchi S, Sawano A and Shibuya M (1997) Characterization of the extracellular domain in vascular endothelial growth factor receptor-1 (Flt-1 tyrosine kinase). Jpn J Cancer Res 88, 867-876 https://doi.org/10.1111/j.1349-7006.1997.tb00463.x
  22. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M and Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269, 26988-26995
  23. Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375, 287-291 https://doi.org/10.1016/j.bbrc.2008.07.121
  24. Autiero M, Waltenberger J, Communi D et al (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9, 936-943 https://doi.org/10.1038/nm884
  25. Roskoski R Jr (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62, 179-213 https://doi.org/10.1016/j.critrevonc.2007.01.006
  26. Brozzo MS, Bjelic S, Kisko K et al (2012) Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood 119, 1781-1788 https://doi.org/10.1182/blood-2011-11-390922
  27. Leppanen VM, Tvorogov D, Kisko K et al (2013) Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc Natl Acad Sci U S A 110, 12960-12965 https://doi.org/10.1073/pnas.1301415110
  28. Ruch C, Skiniotis G, Steinmetz MO, Walz T and Ballmer-Hofer K (2007) Structure of a VEGF-VEGF receptor complex determined by electron microscopy. Nat Struct Mol Biol 14, 249-250 https://doi.org/10.1038/nsmb1202
  29. Yang Y, Xie P, Opatowsky Y and Schlessinger J (2010) Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling. Proc Natl Acad Sci U S A 107, 1906-1911 https://doi.org/10.1073/pnas.0914052107
  30. Markovic-Mueller S, Stuttfeld E, Asthana M et al (2017) Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A. Structure 25, 341-352 https://doi.org/10.1016/j.str.2016.12.012
  31. Christinger HW, Fuh G, de Vos AM and Wiesmann C (2004) The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1. J Biol Chem 279, 10382-10388 https://doi.org/10.1074/jbc.M313237200
  32. Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA and de Vos AM (1997) Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91, 695-704 https://doi.org/10.1016/S0092-8674(00)80456-0
  33. McTigue M, Murray BW, Chen JH, Deng YL, Solowiej J and Kania RS (2012) Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc Natl Acad Sci U S A 109, 18281-18289 https://doi.org/10.1073/pnas.1207759109
  34. McTigue MA, Wickersham JA, Pinko C et al (1999) Crystal structure of the kinase domain of human vascular endothelial growth factor receptor 2: a key enzyme in angiogenesis. Structure 7, 319-330 https://doi.org/10.1016/S0969-2126(99)80042-2
  35. Okamoto K, Ikemori-Kawada M, Jestel A et al (2015) Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med Chem Lett 6, 89-94 https://doi.org/10.1021/ml500394m
  36. Oguro Y, Miyamoto N, Okada K et al (2010) Design, synthesis, and evaluation of 5-methyl-4-phenoxy-5Hpyrrolo[ 3,2-d]pyrimidine derivatives: novel VEGFR2 kinase inhibitors binding to inactive kinase conformation. Bioorg Med Chem 18, 7260-7273 https://doi.org/10.1016/j.bmc.2010.08.017
  37. Fong GH, Rossant J, Gertsenstein M and Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70 https://doi.org/10.1038/376066a0
  38. Hiratsuka S, Minowa O, Kuno J, Noda T and Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95, 9349-9354 https://doi.org/10.1073/pnas.95.16.9349
  39. Landgren E, Schiller P, Cao Y and Claesson-Welsh L (1998) Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 16, 359-367 https://doi.org/10.1038/sj.onc.1201545
  40. Sawano A, Takahashi T, Yamaguchi S and Shibuya M (1997) The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. Biochem Biophys Res Commun 238, 487-491 https://doi.org/10.1006/bbrc.1997.7327
  41. Cunningham SA, Waxham MN, Arrate PM and Brock TA (1995) Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of phosphatidylinositol 3-kinase. Mapping of a novel site involved in binding. J Biol Chem 270, 20254-20257 https://doi.org/10.1074/jbc.270.35.20254
  42. Katoh O, Tauchi H, Kawaishi K, Kimura A and Satow Y (1995) Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 55, 5687-5692
  43. Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62-66 https://doi.org/10.1038/376062a0
  44. Holmqvist K, Cross MJ, Rolny C et al (2004) The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 279, 22267-22275 https://doi.org/10.1074/jbc.M312729200
  45. Matsumoto T, Bohman S, Dixelius J et al (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24, 2342-2353 https://doi.org/10.1038/sj.emboj.7600709
  46. Karkkainen MJ, Haiko P, Sainio K et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5, 74-80 https://doi.org/10.1038/ni1013
  47. Makinen T, Veikkola T, Mustjoki S et al (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20, 4762-4773 https://doi.org/10.1093/emboj/20.17.4762
  48. Dixelius J, Makinen T, Wirzenius M et al (2003) Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem 278, 40973-40979 https://doi.org/10.1074/jbc.M304499200
  49. Hanahan D and Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674 https://doi.org/10.1016/j.cell.2011.02.013
  50. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182-1186 https://doi.org/10.1056/NEJM197111182852108
  51. Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7, 575-583 https://doi.org/10.1038/87904
  52. Hattori K, Heissig B, Wu Y et al (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8, 841-849 https://doi.org/10.1038/nm740
  53. Maynard SE, Min JY, Merchan J et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111, 649-658 https://doi.org/10.1172/JCI17189
  54. Irrthum A, Karkkainen MJ, Devriendt K, Alitalo K and Vikkula M (2000) Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet 67, 295-301 https://doi.org/10.1086/303019
  55. Rockson SG (2001) Lymphedema. Am J Med 110, 288-295 https://doi.org/10.1016/S0002-9343(00)00727-0
  56. Gerber HP and Ferrara N (2005) Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 65, 671-680
  57. Quesada AR, Munoz-Chapuli R and Medina MA (2006) Anti-angiogenic drugs: from bench to clinical trials. Med Res Rev 26, 483-530 https://doi.org/10.1002/med.20059
  58. Piao Y, Henry V, Tiao N et al (2017) Targeting intercellular adhesion molecule-1 prolongs survival in mice bearing bevacizumab-resistant glioblastoma. Oncotarget 8, 96970-96983
  59. Motzer RJ, Michaelson MD, Redman BG et al (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24, 16-24 https://doi.org/10.1200/JCO.2005.02.2574
  60. Chen X, Zheng Z, Chen L and Zheng H (2017) MAPK, NFkappaB, and VEGF signaling pathways regulate breast cancer liver metastasis. Oncotarget 8, 101452-101460
  61. Chen Y, Liu Y, Wang Y et al (2017) Quantification of STAT3 and VEGF expression for molecular diagnosis of lymph node metastasis in breast cancer. Medicine (Baltimore) 96, e8488 https://doi.org/10.1097/MD.0000000000008488
  62. Schirosi L, De Summa S, Tommasi S et al (2017) VEGF and TWIST1 in a 16-biomarker immunoprofile useful for prognosis of breast cancer patients. Int J Cancer 141, 1901-1911 https://doi.org/10.1002/ijc.30868

Cited by

  1. Expression of platelet-derived growth factor-C in aqueous humor of patients with neovascular glaucoma and its correlation with vascular endothelial growth factor pp.1724-6016, 2019, https://doi.org/10.1177/1120672119832785