DOI QR코드

DOI QR Code

Enhancement of L-Threonine Production by Controlling Sequential Carbon-Nitrogen Ratios during Fermentation

  • Lee, Hyeok-Won (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology(KRIBB)) ;
  • Lee, Hee-Suk (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology(KRIBB)) ;
  • Kim, Chun-Suk (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology(KRIBB)) ;
  • Lee, Jin-Gyeom (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology(KRIBB)) ;
  • Kim, Won-Kyo (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology(KRIBB)) ;
  • Lee, Eun-Gyo (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology(KRIBB)) ;
  • Lee, Hong-Weon (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology(KRIBB))
  • Received : 2017.09.12
  • Accepted : 2017.11.12
  • Published : 2018.02.28

Abstract

Controlling the residual glucose concentration is important for improving productivity in $\text\tiny{L}$-threonine fermentation. In this study, we developed a procedure to automatically control the feeding quantity of glucose solution as a function of ammonia-water consumption rate. The feeding ratio ($R_{C/N}$) of glucose and ammonia water was predetermined via a stoichiometric approach, on the basis of glucose-ammonia water consumption rates. In a 5-L fermenter, 102 g/l $\text\tiny{L}$-threonine was obtained using our glucose-ammonia water combined feeding strategy, which was then successfully applied in a 500-L fermenter (89 g/l). Therefore, we conclude that an automatic combination feeding strategy is suitable for improving $\text\tiny{L}$-threonine production.

Acknowledgement

Supported by : Korea Research Institute of Bioscience & Biotechnology (KRIBB)

References

  1. Ienczak JL, Quines LK, de Melo AA, Brandellero M, Mendes CR, Schmidell W, et al. 2011. High cell density strategy for poly (3-hydroxybutyrate) production by Cupriavidus necator. Braz. J. Chem. Eng. 28: 585-596. https://doi.org/10.1590/S0104-66322011000400004
  2. Seo HP, Chung CH, Kim SK, Richard AG, David LK, Lee JW. 2004. Mass production of pullulan with optimized concentrations of carbon and nitrogen sources by Aureobasidium pullulans HP-2001 in a 100-L bioreactor with the inner pressure. J. Microbiol. Biotechnol. 14: 237-242.
  3. He X , Chen K , Li Y , Wang Z, Zhang H , Qian J , et al. 2015. Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation. Bioprocess Biosyst. Eng. 38: 1615-1622. https://doi.org/10.1007/s00449-015-1403-x
  4. Tada K, Kishimoto M, Omasa T, Katakura Y, Suga K. 2000. L-Lysine production by exponential feeding of L-threonine. J. Biosci. Bioeng. 90: 669-674. https://doi.org/10.1016/S1389-1723(00)90015-X
  5. Wang J, Wen B, Xu Q, Xie X, Chen N. 2015. Optimization of carbon source and glucose feeding strategy for improvement of L-isoleucine production by Escherichia coli. Biotechnol. Biotechnol. Equip. 29: 374-380. https://doi.org/10.1080/13102818.2015.1006899
  6. Cheng LK, Wang J, Xu QY, Xie XX, Zhang YJ, Zhao CG, et al. 2012. Effect of feeding strategy on L-tryptophan production by recombinant Escherichia coli. Ann. Microbiol. 62: 1625-1634. https://doi.org/10.1007/s13213-012-0419-6
  7. Kongklom N, Luo HZ, Shi ZP, Pechyen C, Chisti Y, Sirisansaneeyakul S. 2015. Production of poly-${\gamma}$-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochem. Eng. J. 100: 67-75. https://doi.org/10.1016/j.bej.2015.04.007
  8. Li P, Gu Q, Wu X. 2016. Fed-batch production of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in soluble form in Escherichia coli and its purification and characterization. Protein Expr. Purif. 126: 115-121.
  9. Shantini K, Yahya ARM, Amirul AA. 2015. Influence of feeding and controlled dissolved oxygen level on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus sp. USMAA2-4 and its characterization. Appl. Biochem. Biotechnol. 176: 1315-1334.
  10. Zhao C, Cheng L, Xu Q, Wang J, Shen Z, Chen N. 2016. Improvement of the production of L-tryptophan in Escherichia coli by application of a dissolved oxygen stage control strategy. Ann. Microbiol. 66: 843-854. https://doi.org/10.1007/s13213-015-1172-4
  11. Riesenberg D, Schulz V, Knorre WA, Pohl HD, Korz D, Sanders EA, et al. 1991. High cell density cultivation of Escherichia coli at controlled specific growth rate. J. Biotechnol. 20: 17-27. https://doi.org/10.1016/0168-1656(91)90032-Q
  12. Chen N, Huang J, Feng ZB, Yu L, Xu QY, Wen TY. 2009. Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli. Appl. Biochem. Biotechnol. 158: 595-604. https://doi.org/10.1007/s12010-008-8385-y
  13. Lee MH, Lee HW, Park JH, Ahn JO, Jung JK, Hwang YI. 2006. Improved L-threonine production of Escherichia coli mutant by optimization of culture conditions. J. Biosci. Bioeng. 101: 127-130. https://doi.org/10.1263/jbb.101.127
  14. Kase H, Nakayama K. 1972 Production of L-threonine by analog-resistant mutants. Agric. Biol. Chem. 36: 1611-1621. https://doi.org/10.1080/00021369.1972.10860451
  15. Lee HW, Yoon SJ, Jang HW, Kim CS, Kim TH, Ryu WS, et al. 2000. Effects of mixing on fed-batch fermentation of L-ornithine. J. Biosci. Bioeng. 89: 539-544.
  16. Song KH, Lee HH, Hyun HH. 2000. Characterization of salttolerant mutant for enhancement of L-threonine production in Escherichia coli. Appl. Microbiol. Biotechnol. 54: 647-651. https://doi.org/10.1007/s002530000417