DOI QR코드

DOI QR Code

FIDO 시스템에서 EEG 신호를 이용한 사용자 인증 방법

User Authentication Method using EEG Signal in FIDO System

  • 김용기 (전주비전대학교 정보통신과) ;
  • 채철주 (한국농수산대학 교양공통과) ;
  • 조한진 (극동대학교 에너지IT공학과)
  • Kim, Yong-Ki (Department of Information & Communications, VISION College of JeonJu) ;
  • Chae, Cheol-Joo (Department of General Education, Korea National College of Agriculture and Fisheries) ;
  • Cho, Han-Jin (Department of Energy IT Engineering, Far East University)
  • 투고 : 2017.11.13
  • 심사 : 2018.01.20
  • 발행 : 2018.01.28

초록

최근 IT기슬과 금융 시스템의 융합으로 생체인식 기술이 사용되기 시작하였다. 이러한 생체 인식 기술인 FIDO(Fast Identity Online) 기술을 이용하여 삼성과 애플은 삼성페이와 애플페이 서비스를 시작하였다. FIDO 인증 기술은 패스워드와 같은 기존 인증 방법을 대체하고 있다. 생체 인식 기술 중 지문인식 기술은 비교적 저렴한 가격의 디바이스와 사용자 거부 반응을 최소화 할 수 있다는 점 때문에 주목받고 있다. 그러나 지문정보의 경우 사용자가 가지고 있는 수가 제한적이며, 외부 공격자에 의해 지문정보가 유출될 경우 재사용할 수 없다는 단점이 있다. 그러므로 본 논문에서는 생체인식 기술 중 하나인 EEG 신호를 이용하여 사용자를 인증할 수 있는 방법을 제안한다. 제안 논문에서는 기존의 다채널 EEG 디바이스를 사용하지 않고 단채널 EEG 디바이스를 사용하여 편리성을 높였으며, EEG 신호 측정값을 FIDO 시스템에 사용할 수 있는 방법을 제안하였다. 제안 논문에서는 특정 개체 인식 전 후의 EEG 신호를 측정하여 사용자가 특정 개체를 인식하였을 때의 EEG 신호를 사용자 인증 수단을 활용할 수 있는 방법을 제안하였다.

키워드

EEG 인증;생체인증;사용자 인증

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea(NRF)

참고문헌

  1. Sunghyun Yun, "The Biometric Authentication Scheme Capable of Multilevel Security Control," Journal of the Korea Convergence Society, Vol. 8, No. 2, pp. 9-14, 2017. https://doi.org/10.15207/JKCS.2017.8.2.009
  2. Sunghyun Yun, "The Biometric Authentication based Dynamic Group Signature Scheme," Journal of the Korea Convergence Society, Vol. 7, No. 1, pp. 49-55, 2016. https://doi.org/10.15207/JKCS.2016.7.1.049
  3. Won-Jun Jang, Hyung-Woo Lee, "Biometric One-Time Password Generation Mechanism and its Application on SIP Authentication," Journal of the Korea Convergence Society, Vol. 1, No. 1, pp. 93-100, 2010.
  4. Sang-Rae Cho et.al., "Passwordless Authentication Technology-FIDO," Electronics and Telecommunications Trends, 2014.
  5. Jaejung Kim, "Study on the password-free certification system using the FIDO (Fast IDentity Online)," Communications of the Korean Institute of Information Scientists and Engineers, Vol. 33, No. 5, pp. 9-12, 2015.
  6. SuHyeong Kim, "FIDO Based PinTech Authentication Technology," The Journal of The Korean Institute of Communication Sciences, Vol. 33, No. 2, pp. 59-65, 2016.
  7. Sangrae Cho, YoungSeob Cho, Soohyung Kim, "Overview FIDO 2.0 Authentication Technology," Korea Institute Of Information Security And Cryptology, REVIEW OF KIISC, Vol. 26, No. 2, pp. 14-19, 2016.
  8. Seungchul Park, "A Comparative Analysis of PKI Authentication and FIDO Authentication," Journal of the Korea Institute of Information and Communication Engineering, Vol. 21, No. 7, pp. 1411-1419, 2017. https://doi.org/10.6109/JKIICE.2017.21.7.1411
  9. Seungjin Han, "A Robust Mutual Authentication between User Devices and Relaying Server(FIDO Server) using Certificate Authority in FIDO Environments," Journal of the Korea Society of Computer and Information, Vol. 21, No. 10, pp. 63-68, 2016. https://doi.org/10.9708/JKSCI.2016.21.10.063
  10. Byoungcheon Lee, "Certified Key Management in Multi K-FIDO Device Environment," Journal of the Korea Institute of Information Security & Cryptology, Vol. 27, No. 2, pp. 293-303, 2017. https://doi.org/10.13089/JKIISC.2017.27.2.293
  11. Han-Gyu Ko, Jin-Man Cho, Daeseon Choi, "An Incremental Elimination Method of EEG Samples Collected by Single-Channel EEG Measurement Device for Practical Brainwave-Based User Authentication," Journal of the Korea Institute of Information Security & Cryptology, Vol. 27, No. 2, pp. 383-395, 2017. https://doi.org/10.13089/JKIISC.2017.27.2.383
  12. W. Khalifa, A. Salem, M. Roushdy, and K. Revett, "A Survey of EEG Based User Authentication Schemes," Proceedings of the 2012 8th International Conference on Informatics and Systems, pp. 55-60, 2012.
  13. David Starling, "Temporal Analysis of EEG patterns in a biofeedback based Brain Computer Interface," Tech Report No. CYB/2003/UG/DJS/1.
  14. G. Costantini, M. Todisco, D. Casali, M. Carota, G. Saggio, L. Bianchi, M. Abbafati and L. R. Quitadamo, "SVM Classification of EEG Signals for Brain Computer Interface," Proc. of the 2009 Confer- ence on Neural Nets WIRN09: Proceedings of the 19th Italian Workshop on Neural Networks, pp. 229-233, 2009.
  15. Chung-heon Lee, Jang-woo Kwon, Gyu-dong Kim, Jun-eui Hong, Dae-Seob Shin, Donghoon Lee, "A Study on EEG based Concentration Transmission and Brain Computer Interface Application," The Institute of Electronics Engineers of Korea - System and Control, Vol. 46, No. 2, pp. 41-46, 2009.
  16. J. Chuang, H. Nguyen, C. Wang, and B. Johnson, "I think, therefore I am: Usability and Security of Authentication using Brainwaves," Proceedings of the 2013 Workshop on Usable Security, pp. 1-16, 2013.