DRG2 Deficiency Causes Impaired Microtubule Dynamics in HeLa Cells

  • Dang, Thao (School of Biological Sciences, University of Ulsan) ;
  • Jang, Soo Hwa (School of Biological Sciences, University of Ulsan) ;
  • Back, Sung Hoon (School of Biological Sciences, University of Ulsan) ;
  • Park, Jeong Woo (School of Biological Sciences, University of Ulsan) ;
  • Han, In-Seob (School of Biological Sciences, University of Ulsan)
  • Received : 2018.03.15
  • Accepted : 2018.09.27
  • Published : 2018.12.31


The developmentally regulated GTP binding protein 2 (DRG2) is involved in the control of cell growth and differentiation. Here, we demonstrate that DRG2 regulates microtubule dynamics in HeLa cells. Analysis of live imaging of the plus-ends of microtubules with EB1-EGFP showed that DRG2 deficiency (shDRG2) significantly reduced the growth rate of HeLa cells. Depletion of DRG2 increased 'slow and long-lived' subpopulations, but decreased 'fast and short-lived' subpopulations of microtubules. Microtubule polymerization inhibitor exhibited a reduced response in shDRG2 cells. Using immunoprecipitation, we show that DRG2 interacts with tau, which regulates microtubule polymerization. Collectively, these data demonstrate that DRG2 may aid in affecting microtubule dynamics in HeLa cells.

E1BJB7_2018_v41n12_1045_f0001.png 이미지

Fig. 1. DRG2 depletion regulates the spatial organization of dynamic switching behavior of microtubules in HeLa cells.

E1BJB7_2018_v41n12_1045_f0002.png 이미지

Fig. 2. Depletion of DRG2 enhances resistance to microtubule inhibitors.

E1BJB7_2018_v41n12_1045_f0003.png 이미지

Fig. 3. Depletion of DRG2 enhances resistance to microtubule depolymerization induced by nocodazole.

E1BJB7_2018_v41n12_1045_f0004.png 이미지

Fig. 4. DRG2 binds to tau and increases phosphorylation on tau at S202.


Supported by : National Research Foundation of Korea (NRF)


  1. Akhmanova, A., and Steinmetz, M.O. (2008). Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9, 309-322.
  2. Amos, L.A., and Lowe, J. (1999). How taxol stabilises microtubule structure. Chem. Biol. 6, R65-9.
  3. Applegate, K.T., Besson, S., Matov, A., Bagonis, M.H., Jaqaman, K., and Danuser, G. (2011). plusTipTracker: Quantitative image analysis software for the measurement of microtubule dynamics. J. Struct. Biol. 176, 168-184.
  4. Braun, A., Dang, K., Buslig, F.,Baird, M.A., Davidson, M.W., Waterman, C.M., and Myers, K.A. (2014). Rac1 and aurora a regulate MCAK to polarize microtubule growth in migrating endothelial cells. J. Cell Biol. 206, 97-112.
  5. Desai, A., and Mitchison, T.J. (1997). Microtubule polymerization dynamics. Annu Rev. Cell Dev. Biol. 13, 83-117.
  6. Frigault, M.M., Lacoste, J., Swift, J.L., and Brown, C.M. (2009). Livecell microscopy - tips and tools. J. Cell Sci. 122, 753-767.
  7. Jang, S.H., Kim, A.R., Park, N.H., Park, J.W., and Han, I.S. (2016). DRG2 regulates G2/M progression via the cyclin B1-Cdk1 complex. Mol. Cells 39, 699-704.
  8. Ko, M.S., Lee, U.H., Kim, S.I., Kim, H.J., Park, J.J., Cha, S.J., Kim, S.B., Song, H., Chung, D.K., Han, I.S., et al. (2004). Overexpression of DRG2 suppresses the growth of Jurkat T cells but does not induce apoptosis. Arch. Biochem. Biophys. 422, 137-144.
  9. Leipe, D.D., Wolf, Y.I., Koonin, E.V., and Aravind, L. (2002). Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41-72.
  10. Li, T., and Paudel, H.K. (2006). Glycogen synthase kinase 3beta phosphorylates Alzheimer's disease-specific Ser396 of microtubuleassociated protein tau by a sequential mechanism. Biochemistry 45, 3125-3133.
  11. Lu, L., Lv, Y., Dong, J., Hu, S., and Peng, R. (2016). DRG1 is a potential oncogene in lung adenocarcinoma and promotes tumor progression via spindle checkpoint signaling regulation. Oncotarget 7, 72795-72806.
  12. Luders, J., and Stearns, T. (2007). Microtubule-organizing centres: a re-evaluation. Nat. Rev. Mol. Cell Biol. 8, 161-167.
  13. Mani, M., Lee, U.H., Yoon, N.A., Kim, H.J., Ko, M.S., Seol, W., Joe, Y., Chung, H.T., Lee, B.J., Moon, C.H., et al. (2016). Developmentally regulated GTP-binding protein 2 coordinates Rab5 activity and transferrin recycling. Mol. Biol. Cell 27, 334-348.
  14. Mani, M., Lee, U.H., Yoon, N.A., Yoon, E.H., Lee, B.J., Cho, W.J., and Park, J.W. (2017). Developmentally regulated GTP-binding protein 2 is required for stabilization of Rac1-positive membrane tubules. Biochem. Biophys. Res. Commun. 493, 758-764.
  15. Maurer, S.P., Cade, N.I., Bohner, G., Gustafsson, N., Boutant, E., and Surrey, T. (2014). EB1 accelerates two conformational transitions important for microtubule maturation and dynamics. Curr. Biol. 24, 372-384.
  16. Mitchison, T., and Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature 312, 237-242.
  17. Nogales, E., and Wang, H.W. (2006). Structural intermediates in microtubule assembly and disassembly: how and why? Curr. Opin. Cell Biol. 18, 179-184.
  18. Rankin, C.A., Sun, Q., and Gamblin, T.C. (2005). Pseudophosphorylation of tau at Ser202 and Thr205 affects tau filament formation. Brain Res. Mol. Brain Res. 138, 84-93.
  19. Schenker, T., Lach, C., Kessler, B., Calderara, S., and Trueb, B. (1994). A novel GTP-binding protein which is selectively repressed in SV40 transformed fibroblasts. J. Biol. Chem. 269, 25447-25453.
  20. Seetapun, D., Castle, B.T., McIntyre, A.J., Tran, P.T., and Odde, D.J. (2012). Estimating the microtubule GTP cap size in vivo. Curr. Biol. 22, 1681-1687.
  21. Song, H., Kim, S.I., Ko, M.S., Kim, H.J., Heo, J.C., Lee, H.J., Lee, H.S., Han, I.S., Kwack, K., and Park, J.W. (2004). Overexpression of DRG2 increases G2/M phase cells and decreases sensitivity to nocodazoleinduced apoptosis. J. Biochem. 135, 331-335.
  22. Yang, H., Ganguly, A., and Cabral, F. (2010). Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs. J. Biol. Chem. 285, 32242-32250.