DOI QR코드

DOI QR Code

Makorin 1 Regulates Developmental Timing in Drosophila

  • Tran, Hong Thuan (Department of Biomedical Sciences, Ajou University Graduate School of Medicine) ;
  • Cho, Eunjoo (Department of Biomedical Sciences, Ajou University Graduate School of Medicine) ;
  • Jeong, Seongsu (Department of Biomedical Sciences, Ajou University Graduate School of Medicine) ;
  • Jeong, Eui Beom (Department of Biomedical Sciences, Ajou University Graduate School of Medicine) ;
  • Lee, Hae Sang (Department of Pediatrics, Ajou University Medical Center) ;
  • Jeong, Seon Yong (Department of Medical Genetics, Ajou University Medical Center) ;
  • Hwang, Jin Soon (Department of Pediatrics, Ajou University Medical Center) ;
  • Kim, Eun Young (Department of Biomedical Sciences, Ajou University Graduate School of Medicine)
  • Received : 2018.09.03
  • Accepted : 2018.09.25
  • Published : 2018.12.31

Abstract

The central mechanisms coordinating growth and sexual maturation are well conserved across invertebrates and vertebrates. Although mutations in the gene encoding makorin RING finger protein 3 (mkrn3) are associated with central precocious puberty in humans, a causal relationship has not been elucidated. Here, we examined the role of mkrn1, a Drosophila ortholog of mammalian makorin genes, in the regulation of developmental timing. Loss of MKRN1 in $mkrn1^{exS}$ prolonged the $3^{rd}$ instar stage and delayed the onset of pupariation, resulting in bigger size pupae. MKRN1 was expressed in the prothoracic gland, where the steroid hormone ecdysone is produced. Furthermore, $mkrn1^{exS}$ larvae exhibited reduced mRNA levels of phantom, which encodes ecdysone-synthesizing enzyme and E74, which is a down-stream target of ecdysone. Collectively, these results indicate that MKRN1 fine-tunes developmental timing and sexual maturation by affecting ecdysone synthesis in Drosophila. Moreover, our study supports the notion that malfunction of makorin gene family member, mkrn3 dysregulates the timing of puberty in mammals.

Keywords

Drosophila;growth;makorin1;makorin3;sexual maturation

E1BJB7_2018_v41n12_1024_f0001.png 이미지

Fig.1. Generation of mkrn1 deletion alleles.

E1BJB7_2018_v41n12_1024_f0002.png 이미지

Fig. 2. Deletion of mkrn1 delayed pupariation and increased pupa size.

E1BJB7_2018_v41n12_1024_f0003.png 이미지

Fig. 3. Downregulation of mkrn1 paralogs did not affect pupariation timing.

E1BJB7_2018_v41n12_1024_f0004.png 이미지

Fig. 4. MKRN1 was expressed in the PG.

E1BJB7_2018_v41n12_1024_f0005.png 이미지

Fig. 5. Deletion of mkrn1 reduced phantom and E74 mRNA levels.

Acknowledgement

Supported by : Korea Health Industry Development Institute (KHIDI), National Research Foundation

References

  1. Abreu, A.P., Dauber, A., Macedo, D.B., Noel, S.D., Brito, V.N., Gill, J.C., Cukier, P., Thompson, I.R., Navarro, V.M., Gagliardi, P.C., et al. (2013). Central precocious puberty caused by mutations in the imprinted gene MKRN3. N. Engl. J. Med. 368, 2467-2475. https://doi.org/10.1056/NEJMoa1302160
  2. Angulo, M.A., Butler, M.G., and Cataletto, M.E. (2015). Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J. Endocrinol. Invest. 38, 1249-1263. https://doi.org/10.1007/s40618-015-0312-9
  3. Bohne, A., Darras, A., D'Cotta, H., Baroiller, J.F., Galiana-Arnoux, D., and Volff, J.N. (2010). The vertebrate makorin ubiquitin ligase gene family has been shaped by large-scale duplication and retroposition from an ancestral gonad-specific, maternal-effect gene. BMC Genomics 11, 721. https://doi.org/10.1186/1471-2164-11-721
  4. Bohni, R., Riesgo-Escovar, J., Oldham, S., Brogiolo, W., Stocker, H., Andruss, B.F., Beckingham, K., and Hafen, E. (1999). Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97, 865-875. https://doi.org/10.1016/S0092-8674(00)80799-0
  5. Boyd, L., O'Toole, E., and Thummel, C.S. (1991). Patterns of E74A RNA and protein expression at the onset of metamorphosis in Drosophila. Development 112, 981-995.
  6. Butler, M.G. (2011). Prader-Willi Syndrome: obesity due to genomic imprinting. Curr. Genomics 12, 204-215. https://doi.org/10.2174/138920211795677877
  7. Caldwell, P.E., Walkiewicz, M., and Stern, M. (2005). Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr. Biol. 15, 1785-1795. https://doi.org/10.1016/j.cub.2005.09.011
  8. Carel, J.C., Lahlou, N., Roger, M., and Chaussain, J.L. (2004). Precocious puberty and statural growth. Hum. Reprod Update 10, 135-147. https://doi.org/10.1093/humupd/dmh012
  9. Cassar, P.A., Carpenedo, R.L., Samavarchi-Tehrani, P., Olsen, J.B., Park, C.J., Chang, W.Y., Chen, Z., Choey, C., Delaney, S., Guo, H., et al. (2015). Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network. EMBO Rep. 16, 1334-1357. https://doi.org/10.15252/embr.201540974
  10. Christoforidis, A., Skordis, N., Fanis, P., Dimitriadou, M., Sevastidou, M., Phelan, M.M., Neocleous, V., and Phylactou, L.A. (2017). A novel MKRN3 nonsense mutation causing familial central precocious puberty. Endocrine 56, 446-449. https://doi.org/10.1007/s12020-017-1232-6
  11. Colombani, J., Bianchini, L., Layalle, S., Pondeville, E., Dauphin-Villemant, C., Antoniewski, C., Carre, C., Noselli, S., and Leopold, P. (2005). Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310, 667-670. https://doi.org/10.1126/science.1119432
  12. Gajdos, Z.K., Hirschhorn, J.N., and Palmert, M.R. (2009). What controls the timing of puberty? An update on progress from genetic investigation. Curr. Opin. Endocrinol. Diabetes Obes. 16, 16-24. https://doi.org/10.1097/MED.0b013e328320253c
  13. Golub, M.S., Collman, G.W., Foster, P.M., Kimmel, C.A., Rajpert-De Meyts, E., Reiter, E.O., Sharpe, R.M., Skakkebaek, N.E., and Toppari, J. (2008). Public health implications of altered puberty timing. Pediatrics 121 Suppl. 3, S218-230. https://doi.org/10.1542/peds.2007-1813G
  14. Gray, T.A., Azama, K., Whitmore, K., Min, A., Abe, S., and Nicholls, R.D. (2001). Phylogenetic conservation of the makorin-2 gene, encoding a multiple zinc-finger protein, antisense to the RAF1 protooncogene. Genomics 77, 119-126. https://doi.org/10.1006/geno.2001.6627
  15. Gray, T.A., Hernandez, L., Carey, A.H., Schaldach, M.A., Smithwick, M.J., Rus, K., Marshall Graves, J.A., Stewart, C.L., and Nicholls, R.D. (2000). The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics 66, 76-86. https://doi.org/10.1006/geno.2000.6199
  16. Gunawardhana, K.L., and Hardin, P.E. (2017). VRILLE controls PDF neuropeptide accumulation and arborization rhythms in small ventrolateral neurons to drive rhythmic behavior in drosophila. Curr. Biol. 27, 3442-3453 e3444. https://doi.org/10.1016/j.cub.2017.10.010
  17. Huang, X., Warren, J.T., and Gilbert, L.I. (2008). New players in the regulation of ecdysone biosynthesis. J. Genet. Genomics 35, 1-10. https://doi.org/10.1016/S1673-8527(08)60001-6
  18. Jong, M.T., Carey, A.H., Caldwell, K.A., Lau, M.H., Handel, M.A., Driscoll, D.J., Stewart, C.L., Rinchik, E.M., and Nicholls, R.D. (1999). Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region. Hum. Mol. Genet. 8, 795-803. https://doi.org/10.1093/hmg/8.5.795
  19. Kim, J.H., Park, S.M., Kang, M.R., Oh, S.Y., Lee, T.H., Muller, M.T., and Chung, I.K. (2005). Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes. Dev. 19, 776-781. https://doi.org/10.1101/gad.1289405
  20. Layalle, S., Arquier, N., and Leopold, P. (2008). The TOR pathway couples nutrition and developmental timing in Drosophila. Dev. Cell 15, 568-577. https://doi.org/10.1016/j.devcel.2008.08.003
  21. Lee, E., Cho, E., Kang, D.H., Jeong, E.H., Chen, Z., Yoo, S.H., and Kim, E.Y. (2016a). Pacemaker-neuron-dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation. Proc. Natl. Acad. Sci. USA 113, E4904-4913. https://doi.org/10.1073/pnas.1523494113
  22. Lee, E.W., Lee, M.S., Camus, S., Ghim, J., Yang, M.R., Oh, W., Ha, N.C., Lane, D.P., and Song, J. (2009). Differential regulation of p53 and p21 by MKRN1 E3 ligase controls cell cycle arrest and apoptosis. EMBO J. 28, 2100-2113. https://doi.org/10.1038/emboj.2009.164
  23. Lee, H.K., Lee, E.W., Seo, J., Jeong, M., Lee, S.H., Kim, S.Y., Jho, E.H., Choi, C.H., Chung, J.Y., and Song, J. (2018a). Ubiquitylation and degradation of adenomatous polyposis coli by MKRN1 enhances Wnt/beta-catenin signaling. Oncogene 37, 4273-4286. https://doi.org/10.1038/s41388-018-0267-3
  24. Lee, H.S., Jin, H.S., Shim, Y.S., Jeong, H.R., Kwon, E., Choi, V., Kim, M.C., Chung, I.S., Jeong, S.Y., and Hwang, J.S. (2016b). Low frequency of MKRN3 mutations in central precocious puberty among Korean girls. Horm. Metab. Res. 48, 118-122.
  25. Lee, M.S., Han, H.J., Han, S.Y., Kim, I.Y., Chae, S., Lee, C.S., Kim, S.E., Yoon, S.G., Park, J.W., Kim, J.H., et al. (2018b). Loss of the E3 ubiquitin ligase MKRN1 represses diet-induced metabolic syndrome through AMPK activation. Nat. Commun. 9, 3404. https://doi.org/10.1038/s41467-018-05721-4
  26. Lee, M.S., Jeong, M.H., Lee, H.W., Han, H.J., Ko, A., Hewitt, S.M., Kim, J.H., Chun, K.H., Chung, J.Y., Lee, C., et al. (2015). PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat. Commun. 6, 7769. https://doi.org/10.1038/ncomms8769
  27. McBrayer, Z., Ono, H., Shimell, M., Parvy, J.P., Beckstead, R.B., Warren, J.T., Thummel, C.S., Dauphin-Villemant, C., Gilbert, L.I., and O'Connor, M.B. (2007). Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev. Cell 13, 857-871. https://doi.org/10.1016/j.devcel.2007.11.003
  28. Mirth, C., Truman, J.W., and Riddiford, L.M. (2005). The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr. Biol. 15, 1796-1807. https://doi.org/10.1016/j.cub.2005.09.017
  29. Mirth, C.K., and Shingleton, A.W. (2012). Integrating body and organ size in Drosophila: recent advances and outstanding problems. Front Endocrinol. (Lausanne) 3, 49.
  30. Nakashima, N., Sharma, P.M., Imamura, T., Bookstein, R., and Olefsky, J.M. (2000). The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes. J. Biol. Chem. 275, 12889-12895. https://doi.org/10.1074/jbc.275.17.12889
  31. Nishioka, J., Shima, H., Fukami, M., Yatsuga, S., Matsumoto, T., Ushijima, K., Kitamura, M., and Koga, Y. (2017). The first Japanese case of central precocious puberty with a novel MKRN3 mutation. Hum. Genome Var. 4, 17017. https://doi.org/10.1038/hgv.2017.17
  32. Oldham, S., Montagne, J., Radimerski, T., Thomas, G., and Hafen, E. (2000). Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes. Dev. 14, 2689-2694. https://doi.org/10.1101/gad.845700
  33. Palmert, M.R., and Hirschhorn, J.N. (2003). Genetic approaches to stature, pubertal timing, and other complex traits. Mol. Genet. Metab. 80, 1-10. https://doi.org/10.1016/S1096-7192(03)00107-0
  34. Rewitz, K.F., Rybczynski, R., Warren, J.T., and Gilbert, L.I. (2006). The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone. Biochem. Soc. Trans. 34, 1256-1260. https://doi.org/10.1042/BST0341256
  35. Rewitz, K.F., Yamanaka, N., and O'Connor, M.B. (2013). Developmental checkpoints and feedback circuits time insect maturation. Curr. Top. Dev. Biol. 103, 1-33.
  36. Rybczynski, R., and Gilbert, L.I. (2003). Prothoracicotropic hormone stimulated extracellular signal-regulated kinase (ERK) activity: the changing roles of Ca(2+)- and cAMP-dependent mechanisms in the insect prothoracic glands during metamorphosis. Mol. Cell Endocrinol. 205, 159-168. https://doi.org/10.1016/S0303-7207(03)00090-X
  37. Schreiner, F., Gohlke, B., Hamm, M., Korsch, E., and Woelfle, J. (2014). MKRN3 mutations in familial central precocious puberty. Horm. Res. Paediatr. 82, 122-126. https://doi.org/10.1159/000362815
  38. Shaw, R.J., Bardeesy, N., Manning, B.D., Lopez, L., Kosmatka, M., DePinho, R.A., and Cantley, L.C. (2004). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91-99. https://doi.org/10.1016/j.ccr.2004.06.007
  39. Shingleton, A.W., Das, J., Vinicius, L., and Stern, D.L. (2005). The temporal requirements for insulin signaling during development in Drosophila. PLoS Biol. 3, e289. https://doi.org/10.1371/journal.pbio.0030289
  40. Tena-Sempere, M. (2013). Keeping puberty on time: novel signals and mechanisms involved. Curr. Top. Dev. Biol. 105, 299-329.
  41. Thummel, C.S. (2001). Molecular mechanisms of developmental timing in C. elegans and Drosophila. Dev. Cell 1, 453-465. https://doi.org/10.1016/S1534-5807(01)00060-0
  42. Walkiewicz, M.A., and Stern, M. (2009). Increased insulin/insulin growth factor signaling advances the onset of metamorphosis in Drosophila. PLoS One 4, e5072. https://doi.org/10.1371/journal.pone.0005072
  43. Warren, J.T., Petryk, A., Marques, G., Parvy, J.P., Shinoda, T., Itoyama, K., Kobayashi, J., Jarcho, M., Li, Y., O'Connor, M.B., et al. (2004). Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem. Mol. Biol. 34, 991-1010. https://doi.org/10.1016/j.ibmb.2004.06.009
  44. Yamanaka, N., Rewitz, K.F., and O'Connor, M.B. (2013). Ecdysone control of developmental transitions: lessons from Drosophila research. Annu. Rev. Entomol. 58, 497-516. https://doi.org/10.1146/annurev-ento-120811-153608