DOI QR코드

DOI QR Code

Preparation of Surface Functionalized Gold Nanoparticles and their Lateral Flow Immunoassay Applications

표면 개질된 금나노입자의 제조 및 이의 측방유동면역 센서 응용

  • Kim, Dong Seok (Department of Chemical Engineering, Kangwon National University) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 김동석 (강원대학교 화학공학과) ;
  • 최봉길 (강원대학교 화학공학과)
  • Received : 2017.10.24
  • Accepted : 2017.12.13
  • Published : 2018.02.10

Abstract

In this work, the surface of gold nanoparticles (AuNPs) was modified with small molecules including mercaptoundecanoic acid (MUA) and L-lysine for the development of highly sensitive lateral flow (LF) sensors. Uniformly sized AuNps were synthesized by a modified Turkevich-Frens method, showing an average size of $16.7{\pm}2.1nm$. Functionalized AuNPs were then characterized by transmission electron microscopy, UV-vis spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The stable conjugation of AuNPs and antibodies was obtained at pH 7.07 and the antibody concentration of $10{\mu}g/mL$. The functionalized AuNP-based LF sensor exhibited lower detection limit of 10 ng/mL for hepatitis B surface antigens than that of using the bare AuNP-based LF sensor (100 ng/mL).

Keywords

gold nanoparticle;functionalization;hepatitis B surface antigen;lateral flow immunoassay

Acknowledgement

Supported by : 한국산업기술진흥원, 한국연구재단

References

  1. L. U. Syed, L. Z. Swisher, H. Huff, C. Rochford, F. Wang, J. Liu, J. Wu, M. Richter, S. Balivada, D. Troyer, and J. Li, Luminol-labeled gold nanoparticles for ultrasensitive chemiluminescence-baded chemical analyses, Analyst, 138, 5600-5609 (2013).
  2. O. Horovitz, A. Mocanu, G. Tomoaia, L. Bobos, D. Dubert, I. Daian, T. Yupsanis, and M. Tomoaia-Cotisel, Lysine mediated assembly of gold nanoparticles, Stud. Univ. Babes-Bolyai, Chem., 52, 97-108 (2007).
  3. S. J. Vella, P. Beattie, R. Cademartiri, A. Laromaine, A. W. Martinez, S. T. Phillips, K. A. Mirica, and G. M. Whitesides, Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick, Anal. Chem., 84, 2883-2891 (2012).
  4. Y. Zhao, M. Cao, J. F. McClelland, Z. Shao, and M. Lu, A photoacoustic immunoassay for biomarker detection, Biosens. Bioelectron., 85, 261-266 (2016).
  5. A. K. Yetisen, M. S. Akram, and C. R. Lowe, Pater-based microfluidic point-of-care diagnostic devices, Lab Chip, 13, 2210-2251 (2013).
  6. J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T. J. Lu, and F. Xu, Advances in paper-based point-of-care diagnostics, Biosens. Bioelectron., 54, 585-597 (2014).
  7. J. Sun, Y. Xianyu, and X. Jiang, Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics, Chem. Soc. Rev., 43, 6239-6253 (2014).
  8. S. Y. Toh, M. Citartan, S. C. B. Gopinath, and T.-H. Tang, Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay, Biosens. Bioelectron., 64, 392-403 (2015).
  9. S. Zhang, A. Garcia-D'Angeli, J. P. Brennan, and Q. Huo, Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general, Analyst, 139, 439-445 (2014).
  10. C. Hirtz, J. Vialaret, A. Gabelle, N. Nowak, Y. Dauvilliers, and S. Lehmann, From radioimmunoassay to mass spectrometry: a new method to quantify orexin-A (hypocretin-1) in cerebrospinal fluid, Sci. Rep., 6, 25162-25172 (2016).
  11. Y. Zhang, C. Tan, R. Fei, X. Liu, Y. Zhou, J. Chen, H. Chen, R. Zhou, and Y. Hu, Sensitive chemiluminescence immunoassay for E. coli O157:H7 detection with signal dual-amplification using glucose oxidase and laccase, Anal. Chem., 86, 1115-1122 (2014).
  12. E. B. Bahadir and M. K. Sezginturk, Lateral flow assays: principles, designs and labels, Trends Anal. Chem., 82, 286-306 (2016).
  13. C. M. Niemeyer, Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science, Angew. Chem. Int. Ed., 40, 4128-4158 (2001).
  14. L. Dykman and N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives, Chem. Soc. Rev., 41, 2256-2282 (2012).
  15. W. Zhou, X. Gao, D. Liu, and X. Chen, Gold nanoparticles for in vitro diagnostics, Chem. Rev., 115, 10575-10636 (2015).
  16. N. G. Bastus, J. Comenge, and V. Puntes, Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus ostwald ripening, Langmuir, 27, 11098-11105 (2011).
  17. D. S. Kim, Y. T. Kim, S. B. Hong, J. Kim, N. S. Heo, M.-K. Lee, S. J. Lee, B. I. Kim, I. S. Kim, Y. S. Huh, and B. G. Choi, Development of lateral flow assay based on size-controlled gold nanoparticles for detection of hepatitis B surface antigen, Sensors, 16, 2154-2164 (2016).
  18. S. Lou, J. Ye, K. Li, and A. Wu, A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size, Analyst, 137, 1174-1181 (2012).
  19. P. Zhao, N. Li, and D. Astruc, State of the art in gold nanoparticle synthesis, Coord. Chem. Rev., 257, 638-665 (2013).
  20. M. Wuithschick, A. Birnbaum, S. Witte, M. Sztucki, U. Vainio, N. Pinna, K. Rademann, F. Emmerling, R. Kraehnert, and J. Plote, Turkevich in new robes: key questions answered for the mos common gold nanoparticle synthesis, ACS Nano, 9, 7052-7071 (2015)
  21. X. Liu, H. Huang, Q. Jin, and J. Ji, Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles, Langmuir, 27, 5242-5251 (2011).